UNITED TECHNOLOGIES RESEARCH CENTER EAST HARTFORD CT IMIDE MODIFIED EPOXY MATRIX RESIN•(U) FEB 81 D A SCOLA, R H PATER UTRC/R81-914770-12 NASA-CR-165229 AD-A102 122 F/6 11/4 NAS3-22032 UNCLASSIFIED 1 DF 2

THE FILE COPY

LEVEL

IMIDE MODIFIED EPOXY MATRIX RESINS

NASA CR-165229 R81-914770-12

Final Report
Contract NAS3-22032

Prepared for NASA Lewis Research Center Cleveland, Ohio 44135

by

D.A. Scola R.H. Pater

February 1, 1981

E

ast Hartford, Connecticut 06108

DISTRIBUTION STATEMENT A

Approved for public release;

Distribution Unlimited

31 7 27 109

National Aeronautics and Space Administration Washington, DC 20546 H UTRC R 1-91477 -12				
Petromy 1, 1981			3. Recipient's Catalog	No.
8. Performing Organization Code 7. Author(s) 8. Performing Organization Name and Address United Technologies Research Center Silver Lane	4. Title and Subtitle		5. Report Date	
8. Performing Organization Code 7. Author(s) 8. Performing Organization Name and Address United Technologies Research Center Silver Lane	/)		February 1, 1	981
D. A. Scola most R. H. Pater 9 Performing Organization Name and Address United Technologies Research Center Silver Lane East Hartford, CT 06108 12 Sponsoring Agency Name and Address National Aeronautics and Space Administration Washington, DC 20546 14 VTRZ/R/1-914411 15 Supplementary Notes Project Manager, T. T. Serafini, Materials Division NASA Lewis Research Center, Cleveland, 0H 44135 16. Abstract This report Aescribes the results of a ten-month program designed to develoy high char yield epoxy resins using novel bisimide amines (SIA's) as curing agents with a state-of-the-art epoxy resin, MY 720. Four bissimide amines were evaluated in this program. These were the BIA's derived from the 6F anhydride (4,4'-hexafluoroisopropylidene biphthalic anhydride) and the aromatic diamines, 4,4'-diaminodiphenylsulfone (DDS), 4,4'-methylenedianiline (MDA), 4,4'-oxydainiline (DDA) and 4,4'-paraphenylenediamine (PDA). The BIA's were abbreviated 6F-DDS, 6F-MDA, 6F-DDA and 6F-PDA, corresponding to the 6F anhydride and diamines menioned above. Stoichiometric quantities of the epoxy resin and the BIA's (MY 720/6F-DDS, MY 720/6F-MDS, MY 720/6F-MDA, MY 720/6F-DDA and MY 7	IMIDE MODIFIED EPOXY MATRIX RESIN	12, 446/		
United Technologies Research Center Whited Technologies Research Center Silver Lane East Hartford, CT 06108 Pept. 11. Contract or Grant No. NAS3-22832 12. Sponsoring Agency Name and Address National Aeronautics and Space Administration Washington, DC 20546 White Triangle Tri			8. Performing Organiz	ation Report No.
United Technologies Research Center Whited Technologies Research Center Silver Lane East Hartford, CT 06108 Pept. 11. Contract or Grant No. NAS3-22832 12. Sponsoring Agency Name and Address National Aeronautics and Space Administration Washington, DC 20546 White Triangle Tri	D. A. Scola and R. H. Pater			
United Technologies Research Center Find Find				, , ,
Silver Lane East Hartford, CT 06108 Project Manager, Name and Address National Aeronautics and Space Administration Washington, Dc 20546 Project Manager, T. T. Serafini, Materials Division NASA Lewis Research Center, Cleveland, OH 44135 16. Abstract This report describes the results of a ten-month program designed to develop high char yield epoxy resins using novel bisimide amines (BlA's) as curing agents with a state-of-the-art epoxy resin, MY 720. Four bisimide amines were evaluated in this program. These were the BlA's derived from the 6f anhydride (4,4'-hexafluoroisopropylidene biphthalic anhydride) and the aromatic diamines, 4,4'-diaminodiphenylsulfone (DDS), 4,4'-methylenedianline (MDA), 4,4'-oxydlanline (DDA) and 4,4'-paraphenylenediamine (PDA). The BlA's were abbreviated 6f-DDS, 6f-DDS, 6f-DDA, 6f-DDA and 6f-PDA, corresponding to the 6f anhydride and diamines mentioned above. Stoichiometric quantities of the epoxy resin and the BlA's (MY 20)6f-DDS, M, Y 20)6f-DDA, MY 720/6F-DDA, MY 720/6F-DDA, MY 720/6F-DDA, MY 720/6F-DDA, MY 720/6F-DDA and MY 720/6F-DDA and MY 720/6F-DDA, WY 720/6F-DDA, MY 720/6F-DDA,	United Technologies Research Cent	er 9 Final	11-2	
National Aeronautics and Space Administration Washington, DC 20546 / Y 2TRC/R / 1-91477 - 14. Sponsoring Agency Code Washington, DC 20546 / Y 2TRC/R / 1-91477 - 15. Supplementary Notes Project Manager, T. T. Serafini, Materials Division NASA Lewis Research Center, Cleveland, OH 44135 16. Abstract This report describes the results of a ten-month program designed to develop high char yield epoxy resins using novel bisimide amines (BIA's) as curing agents with a state-of-the-art epoxy resin, MY 720. Four bisimide amines were evaluated in this program. These were the BIA's derived from the 6f anhydride (A,4'-hexafluoroisopropylidene biphthalic anhydride) and the aromatic diamines, 4,4'-dtaminodiphenylsulfone (DDS), 4,4'-methylenedianiline (MDA), 4,4'-oxydianiline (DDA) and 4,4'-paraphenylenediamine (PDA). The BIA's were abbreviated 6F-DDS, 6F-MDA, 6F-ODA and 6F-PDA, corresponding to the 6F anhydride and diamines mentioned above. Stoichiometric quantities of the epoxy resin and the BIA's (MY 720/6F-DDS, MY 720/6F-DDA), MY 720/6F-DDA) and 3 50:50 mixture of a BIA and the parent diamine (MY 720/6F-DDA), MY 720/6F-DDA) MY 720/6F-DDA) and a 50:50 mixture of a BIA and the parent diamine (MY 720/6F-DDS, MY 720/6F-DDA), MY 720/6F-DDA) was inspected and MY 720/6F-PDA) and a construct absorption exhibited by the bisimide amine cured epoxies (IME's) vere considerably lower than the state-of-the-art epoxies. The strain-to-failure of the control resin system (MY 720/DDS) was improved 25% by replacement of DDS with 6F-DDS (MY 720/6F-DDS). Each BIA-containing resin exhibited twice the char yield of the control resin MY 720/DDS (Ada rus 20% char). Graphite (BF-DDS and IME-5 is MY 720 cured with the BIA 6F-DDS and IME-5 (where IME-1 is MY 720 cured with the BIA 6F-DDS and IME-5 is MY 720 cured with the BIA 6F-DDS and IME-5 (where IME-1 is MY 720 cured with the BIA 6F-DDS and IME-5 is MY 720 cured with the BIA 6F-DDS and IME-5 (where IME-1 is MY 720 cured with the BIA 6F-DDS and IME-5 is MY 720 cured with the BIA 16F-DDS and IME-5		13.00	1	
National Aeronautics and Space Administration Washington, DC 20546 / Y 2TRC/R / 1-91477 - 14. Sponsoring Agency Code Washington, DC 20546 / Y 2TRC/R / 1-91477 - 15. Supplementary Notes Project Manager, T. T. Serafini, Materials Division NASA Lewis Research Center, Cleveland, OH 44135 16. Abstract This report describes the results of a ten-month program designed to develop high char yield epoxy resins using novel bisimide amines (BIA's) as curing agents with a state-of-the-art epoxy resin, MY 720. Four bisimide amines were evaluated in this program. These were the BIA's derived from the 6f anhydride (A,4'-hexafluoroisopropylidene biphthalic anhydride) and the aromatic diamines, 4,4'-dtaminodiphenylsulfone (DDS), 4,4'-methylenedianiline (MDA), 4,4'-oxydianiline (DDA) and 4,4'-paraphenylenediamine (PDA). The BIA's were abbreviated 6F-DDS, 6F-MDA, 6F-ODA and 6F-PDA, corresponding to the 6F anhydride and diamines mentioned above. Stoichiometric quantities of the epoxy resin and the BIA's (MY 720/6F-DDS, MY 720/6F-DDA), MY 720/6F-DDA) and 3 50:50 mixture of a BIA and the parent diamine (MY 720/6F-DDA), MY 720/6F-DDA) MY 720/6F-DDA) and a 50:50 mixture of a BIA and the parent diamine (MY 720/6F-DDS, MY 720/6F-DDA), MY 720/6F-DDA) was inspected and MY 720/6F-PDA) and a construct absorption exhibited by the bisimide amine cured epoxies (IME's) vere considerably lower than the state-of-the-art epoxies. The strain-to-failure of the control resin system (MY 720/DDS) was improved 25% by replacement of DDS with 6F-DDS (MY 720/6F-DDS). Each BIA-containing resin exhibited twice the char yield of the control resin MY 720/DDS (Ada rus 20% char). Graphite (BF-DDS and IME-5 is MY 720 cured with the BIA 6F-DDS and IME-5 (where IME-1 is MY 720 cured with the BIA 6F-DDS and IME-5 is MY 720 cured with the BIA 6F-DDS and IME-5 (where IME-1 is MY 720 cured with the BIA 6F-DDS and IME-5 is MY 720 cured with the BIA 6F-DDS and IME-5 (where IME-1 is MY 720 cured with the BIA 6F-DDS and IME-5 is MY 720 cured with the BIA 16F-DDS and IME-5	East Hartford, CT 06108	repts 1		
Washington, DC 20546 14 27RC/R 13-914479 - 12 15 Supplementary Notes Project Manager, T. T. Serafini, Materials Division NASA Lewis Research Center, Cleveland, OH 44135 16 Abstract This report describes the results of a ten-month program designed to develoy high char yield epoxy resins using novel bisimide amines (BlA's) as curing agents with a state-of-the-art epoxy resin, MY 720. Four bistmide amines were evaluated in this program. These were the BlA's derived from the 6F anhydride (4,4'-hexafluoroisopropylidene biphthalic anhydride) and the aromatic diamines, 4,4'-diaminodiphenylsulfone (DDS), 4,4'-methylenediamiline (MDA), 4,4'-oxydiamiline (ODA) and 4,4'-paraphenylenediamine (PDA). The BlA's were abbreviated 6F-DDS, 6F-MDA, 6F-ODA and 6F-PDA, corresponding to the 6F anhydride and diamines mentioned above. Stoichiometric quantities of the epoxy resin and the BlA's (MY 720/6F-DDS, MY 720/6F-DDS, MY 720/6F-DDA) and a 50:50 mixture of a BlA and the parent diamine (MY 720/6F-DDS/DDS, MY 720/6F-DDA) and a 50:50 mixture of a BlA and the parent diamine (MY 720/6F-DDS/DDS, MY 720/6F-DDA, MY 720/6F-D	12. Sponsoring Agency Name and Address			
Project Manager, T. T. Serafini, Materials Division NASA Lewis Research Center, Cleveland, OH 44135 16. Abstract This report describes the results of a ten-month program designed to develop high char yield epoxy resins using novel bisimide amines (BIA's) as curing agents with a state-of-the-art epoxy resin, MY 720. Four bisimide amines were evaluated in this program. These were the BIA's derived from the 6F anhydride (4,4'-hexafluoroisopropylidene biphthalic anhydride) and the aromatic diamines, 4,4'-diaminodiphenylsulfone (DDS), 4,4'-methylenediamiline (NDA) and 4,4'-paraphenylenediamine (PDA). The BIA's were abbreviated 6F-DDS, 6F-MDA, 6F-ODA and 6F-PDA, corresponding to the 6F anhydride and diamines mentioned above. Stoichiometric quantities of the epoxy resin and the BIA's (MY 720/6F-DDS, MY 720/6F-DDS, MP 720/6F-DDS, MP 720/6F-DDA, MP 720/6F-DDA, MP 720/6F-DDA, ODA/ODA and MY 720/6F-PDA/PDA) were studied to determine the cure cycle required for preparation of resin specimens. The bisimide cured epoxies were designated IME's (for imide modified epoxy). The physical, thermal and mechanical properties of these novel resins were determined. The levels of moisture absorption exhibited by the bisimide amine cured epoxies (IME's) were considerably lower than the state-of-the-art epoxies. The strain-to-failure of the control resin system (MY 720/DDS) was improved 23% by replacement of DDS with 6F-DDS (MY 720/6F-DDS). Each BIA-containing resin exhibited twice the char yield of the control resin MY 720/DDS (A0% charv 20% char). Graphite fiber reinforced control (C) and IME resins were fabricated and characterized. Two of the composite systems, Celion 6000/IME-1 and Celion 6000/IME-5 (where IME-1 is MY 720 cured with a 50:50 mixture of DDS and the BIA 6F-DDS) emerged as having superior properties compared to the other Celion 6000/IME composite systems and also compared to state-of-the-art graphite epoxy systems. These two systems exhibited excellent wet shear and flexural strengths and moduli at 300 and 350°F. 18.	National Aeronautics and Space Ad	lministration	14. Sponsoring Agency	Code
Project Manager, T. T. Serafini, Materials Division NASA Lewis Research Center, Cleveland, OH 44135 16. Abstract This report describes the results of a ten-month program designed to develop high char yield epoxy resins using novel bisimide amines (BIA's) as curing agents with a state-of-the-art epoxy resin, MY 720. Four bisimide amines were evaluated in this program. These were the BIA's derived from the 6F anhydride (4,4'-hexafluoroisopropylidene biphthalic anhydride) and the aromatic diamines, 4,4'-diaminodiphenylsulfone (DDS), 4,4'-methylenediamiline (MDA), 4,4'-oxydianiline (ODA) and 4,4'-paraphenylenediamine (PDA). The BIA's were abbreviated 6F-DDS, 6F-MDA, 6F-ODA and 6F-PDA, corresponding to the 6F anhydride and diamines mentioned above. Stoichnometric quantities of the epoxy resin and the BIA's (WY 720/6F-DDS, MY 720/6F-DDA) MY 720/6F-PDA) MY 720/6F-PDA) And 350:50 mixture of a BIA and the parent diamine (MY 720/6F-DDS) MY 720/6F-DDA/MDA, MY 720/6F-PDA) and a 50:50 mixture of a BIA and the parent diamine (MY 720/6F-DDS) MRY 720/6F-PDA/MDA, MY 720/6F-DDA and MY 720/6F-PDA) were studied to determine the cure cycle required for preparation of resin specimens. The bisimide cured epoxies were designated IME's (for imide modified epoxy). The physical, thermal and mechanical properties of these novel resins were determined. The levels of moisture absorption exhibited by the bisimide amine cured epoxies (IME's) were considerably lower than the state-of-the-art epoxies. The strain-to-failure of the control resin system (MY 720/DDS) was improved 25% by replacement of DDS with 6F-DDS (MY 720/6F-DDS). Each BIA-containing resin exhibited twice the char yield of the control resin MY 720/DDS (40% char vs 20% char). Graphite fiber reinforced control (C) and IME resins were fabricated and characterized. Two of the composite systems, Celion 6000/IME and 6000/IME) (MY 720/6F-DDS) emerged as having superior properties compared to the other Celion 6000/IME-(MPE) (WPC) curred with the BIA 6F-DDS) emerged as having superior p	Washington, DC 20546 /4 7:	TRT/R/1-97477/		5555
NASA Lewis Research Center, Cleveland, OH 44135 16. Abstract This report describes the results of a ten-month program designed to develop high char yield epoxy resins using novel bisimide amines (BlA's) as curing agents with a state-of-the-art epoxy resin, MY 720. Four bisimide amines were evaluated in this program. These were the BlA's derived from the 6F anhydride (4,4'-hexafluoroisopropylidene biphthalic anhydride) and the aromatic diamines, 4,4'-diaminodiphenylsulfone (DDS), 4,4'-methylenedianiline (MDA), 4,4'-oxydianiline (ODA) and 4,4'-paraphenylenediamine (PDA). The BlA's were abbreviated 6F-DDS, 6F-MDA, 6F-ODA and 6F-PDA, corresponding to the 6F anhydride and diamines mentioned above. Stoichiometric quantities of the epoxy resin and the BlA's (MY 720/6F-DDS, MY 720/6F-MDA/MDA, MY 720/6F-PDA) and a 50:50 mixture of a BlA and the parent diamine (MY 720/6F-DDS/DDS, MY 720/6F-MDA/MDA, MY 720/6F-DDA/DDA were studied to determine the cure cycle required for preparation of resin specimens. The bisimide cured epoxies were designated IME's (for imide modified epoxy). The physical, thermal and mechanical properties of these novel resins were determined. The levels of moisture absorption exhibited by the bisimide amine cured epoxies (IME's) were considerably lower than the state-of-the-art epoxies. The strain-to-failure of the control resin system (MY 720/DDS) was improved 25% by replacement of DDS with 6F-DDS (MY 720/DDS (40% char vs 20% char). Graphite fiber reinforced control (C) and IME resins were fabricated and characterized. Two of the composite systems, Celion 6000/IME-1 and Celion 6000/IME-5 (where IME-1 is MY 720 curred with the BIA 6F-DDS) were ged as having superior properties compared to the other Celion 6000/IME-5 (where IME-1 is MY 720 curred with the BIA 6F-DDS and IME-5 is MY 720 curred with a 50:50 mixture of DDS and the BIA 6F-DDS) were ged as having superior properties compared to the other Celion 6000/IME-5 (where IME-1 is MY 720 curred with the state-of-the-art graphite epoxy systems. These	15. Supplementary Notes			
16. Abstract This report describes the results of a ten-month program designed to develop high char yield epoxy resins using novel bisimide amines (BIA's) as curing agents with a state-of-the-art epoxy resin, MY 720. Four bisimide amines were evaluated in this program. These were the BIA's derived from the 6F anhydride (4,4'-hexafluoroisopropylidene biphthalic anhydride) and the aromatic diamines, 4,4'-diaminodiphenylsulfone (DDS), 4,4'-methylenedianiline (MDA), 4,4'-oxydianiline (ODA) and 4,4'-paraphenylenediamine (PDA). The BIA's were abbreviated 6F-DDS, 6F-MDA, 6F-ODA and 6F-PDA, corresponding to the 6F anhydride and diamines mentioned above. Stoichmetric quantities of the epoxy resin and the BIA's (MY 720/6F-DDS, MY 720/6F-MDA, MY 720/6F-DDA and MY 720/6F-PDA) and a 50:50 mixture of a BIA and the parent diamine (MY 720/6F-MDA, MY 720/6F-DDA and MY 720/6F-PDA) were studied to determine the cure cycle required for preparation of resin specimens. The bisimide cured epoxies were designated IME's (for imide modified epoxy). The physical, thermal and mechanical properties of these novel resins were determined. The levels of moisture absorption exhibited by the bismide amine cured epoxies (IME's) were considerably lower than the state-of-the-art epoxies. The strain-to-failure of the control resin system (MY 720/DDS) was improved 25% by replacement of DDS with 6F-DDS (MY 720/6F-DDS). Each BIA-containing resin exhibited twice the char yield of the control resin MY 720/DDS (40% char vs 20% char). Graphite fiber reinforced control (C) and IME resins were fabricated and characterized. Two of the composite systems, Celion 6000/IME-1 and Celion 6000/IME-5 (where IME-1 is MY 720 cured with the BIA 6F-DDS) and the BIA 6F-DDS) emerged as having superior properties compared to the other Celion 6000/IME composite systems and also compared to state-of-the-art graphite epoxy systems. These two systems exhibited excellent wet shear and flexural strengths and moduli at 300 and 350°F. 17. Key Words (Suggested by Author(s)) 18. D				
epoxies bisimide amines fluorinated epoxies bisimide amine cured epoxies tough epoxies high char epoxy moisture resistant epoxies 19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price*	diamines, 4,4'-diaminodiphenylsus and 4,4'-paraphenylenediamine (Picorresponding to the 6F anhydride epoxy resin and the BIA's (MY 7250:50 mixture of a BIA and the picophysical and MY 720/6F-PDA/PDA) we resin specimens. The bisimide complysical, thermal and mechanical moisture absorption exhibited by than the state-of-the-art epoxies was improved 25% by replacement exhibited twice the char yield of fiber reinforced control (C) and ite systems, Celion 6000/IME-1 and 6F-DDS and IME-5 is MY 720 cured superior properties compared to state-of-the-art graphite epoxy state-o	Ifone (DDS), 4,4'-methylenedianil DA). The BIA's were abbreviated e and diamines mentioned above. D/6F-DDS, MY 720/6F-MDA, MY 720/6 arent diamine (MY 720/6F-DDS/DDS, ere studied to determine the cure ured epoxies were designated IME' properties of these novel resins the bisimide amine cured epoxies is. The strain-to-failure of the of DDS with 6F-DDS (MY 720/6F-DDS ff the control resin MY 720/DDS (4 IME resins were fabricated and cond Celion 6000/IME-5 (where IME-1 with a 50:50 mixture of DDS and the other Celion 6000/IME composisystems. These two systems exhib	ine (MDA), 4,4'-oxy 6F-DDS, 6F-MDA, 6F-Stoichiometric quant F-ODA and MY 720/6F MY 720/6F-MDA/MDA, cycle required for s (for imide modifi were determined. (IME's) were consicontrol resin syste). Each BIA-contai 0% char vs 20% char haracterized. Two is MY 720 cured withe BIA 6F-DDS) emete systems and also	dianiline (ODA) ODA and 6F-PDA, tities of the -PDA) and a MY 720/6F- preparation of ed epoxy). The The levels of derably lower m (MY 720/DDS) ning resin). Graphite of the compos- th the BIA rged as having compared to
epoxies bisimide amines fluorinated epoxies bisimide amine cured epoxies tough epoxies high char epoxy moisture resistant epoxies 19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price*	AT W. Wards (Command by A. Stratill)	146 Phase Acceptant		
bisimide amines fluorinated epoxies bisimide amine cured epoxies tough epoxies high char epoxy moisture resistant epoxies 19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price*		18. Distribution States	nent	
19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price*	bisimide amines fluorinated epoxies bisimide amine cured epoxies tough epoxies high char epoxy	Unclassified	-Unlimited	
i l		20. Security Classif. (of this page)	21. No. of Pages	22. Price*
		Unclassified	98	

* For sale by the National Technical Information Service, Springfield, Virginia 22151

11/2 3 VI

Imide Modified Epoxy Matrix Resin

TABLE OF CONTENTS

SUMMA	ARY .			1
1.	INTRO	DUCTION	N	2
	1.1	Object:	ive of the Program	2
	1.2		m Tasks	2
2.	RESUI	LTS AND	DISCUSSION	3
	2.1	Synthe	sis of Bisimide Amines	3
	2.2	Compos	ition of Bisimide Amine Cured MY 720 Epoxy Resins	4
	2.3	Determ:	ination of Resin Thermal Behavior and Cure Cycle	4
		2.3.1	Infrared (IR) Study of Cure Reaction	4
		2.3.2	Differential Scanning Calorimetry (DSC) Studies	6
		2.3.3	Resin Gel Characteristics	7
			2.3.3.1 122°C Results	7
			2.3.3.2 150°C Results	7
			2.3.3.3 Under Contact Pressure	8
		2.3.4	Melt Behavior of IME Resins	8
		2.3.5	Investigation of Cure Cycles	8
	2.4		Characterization	9
		2.4.1	Disk Fabrication	9
				10
			2.4.2.1 Density, Coefficient of Thermal Expansion	
				10
			<u> </u>	10
		2.4.3	· ·	10
			2.4.3.1 Differential Scanning Calorimetry (DSC), Thermo-	
			mechanical Analyses (TMA) and Thermogravimetric	
				10
				10
		2.4.4		11
		4.4.4	·	11 11
				11 11
	2 -	01	· -	11 11
	2.5		· · ·	
		2.5.1	, •	11
		2.5.2	Processing Parameters for Celion 6000 Epoxy Resin	
			Composites	11

TABLE OF CONTENTS (Cont'd)

			2.5.2.1 Autoclave Processing Studies	11
			2.5.2.2 Compression Molding Processing Studies	
		2.5.3		
			Composite	12
				12
		2.5.4	Moisture Absorption Properties of Celion 6000 Epoxy	
			Resin Composites	13
		2.5.5		13
			2.5.5.1 Thermomechanical Analysis (TMA) and	
				13
			2.5.5.2 Char Forming Properties and Fiber Containment	
			Characteristics	13
		2.5.6		
			6000 Epoxy Resin Composites	14
		2.5.7	Mechanical Properties of Celion 6000 Epoxy Resin	
			Composites	14
				14
			2.5.7.2 Flexural Properties	15
3.	EXPE	RIMENTA	L	16
	3.1	Synthe	sis of Bisimide Amines	16
		3.1.1	4,4'-[2,2,2-Trifluoro-1-(trifluoromethyl)ethylidene]bis	
			[N-(p-sulfanilylphenyl)phthalimide], (6F-DDS)	16
		3.1.2	4,4'-[2,2,2-Trifluoro-1-(trifluoromethyl)ethylidene]bis	
				17
		3.1.3	4,4'-[2,2,2-Trifluoro-1-(trifluoromethy1)ethylidene]bis	
				18
		3.1.4		
			[N-(p-aminophenyl)phthalimide](6F-PDA)	19
	3.2	Prepar	ration of Homogeneous Resin Powders	20
	3.3			20
		3.3.1	Cure Studies	20
		3.3.2	Fabrication Studies	21
	3.4	Charac		21
		3.4.1	Physical Properties	21
		3.4.2		22
		3.4.3		22
	3.5	Charac		22
		3.5.1		22
		3.5.2		2 :

TABLE OF CONTENTS (Cont'd)

		3.5.	2.1	L	Ph	уs	ic	al	. P	rc	pe	ert	iί	es.		•	•					•	•		•					23
		3.5.2.2			De	sc	ri	pt	io	n	οí	E	Exp	eı	cio	aer	nta	11	Me	eth	100	1 1	E o 1	. 1	J 1 1	tra	a-			
					so	ni	c	C-	Sc	ar	15	οſ	Ξ (Cor	фp	s	ite	2]	ar	ie]	ls	•	•				•			23
		3.5	2.3	3	Th	er	ma	1	Pr	oţ	eı	cti	ies	3										•					•	24
		3.5.	2.4	4	Мe	ch	an	ic	a1	. F	'n	ре	ert	iίε	es.	•	•	•	•	•		•	•	•	•	•	•		•	24
4.	CONCLUSIONS			•	•									•		•		•	•								•		•	25
5.	RECOMMENDAT	IONS		•	•	•			•				•	•			•											•		26
6.	REFERENCES .				•				•	•		•	•	•		•	•			•		•	•		•	•	•	•	•	26
TABLI	ES 1 - 39			•	•		•	•	•		•	•		•	•	•	•	•	•		•	•	•		•	•	•	•	•	27
FIGUE	RES 1 - 23																													

Access	ion For	
NTIS	GRA&I	
DTIC T	Aβ	
Unanno	unsed	
Justii	ication_	
Ву		
Distr	ibution/	
	lability	Codes
13,76	Avail an	
Dist	Specia	
1220	1	
	1 1	
	1	

Imide Modified Epoxy Matrix Resin

SUMMARY

This report describes the results of a ten-month program designed to develop tough, high char yield epoxy resins using novel bisimide amines (BIA's) as curing agents with a state-of-the-art epoxy resin, MY 720. Four bisimide amines were evaluated in this program. These were the BIA's derived from the 6F anhydride (4,4'-hexafluoroisopropylidene biphthalic anhydride) and the aromatic diamines, 4,4'-diaminodiphenylsulfone (DDS), 4,4'-methylenedianiline (MDA), 4,4'-oxydianiline (ODA) and 4,4'-paraphenylenediamine (PDA). The BIA's were abbreviated 6F-DDS, 6F-MDA, 6F-ODA and 6F-PDA, corresponding to the 6F anhydride and diamines mentioned above. Stoichiometric quantities of the epoxy resin and the BIA's (MY 720/6F-DDS, MY 720/6F-MDA, MY 720/6F-ODA and MY 720/6F-PDA) and a 50:50 mixture of a BIA and the parent diamine (MY 720/6F-DDS/DDS, MY 720/6F-MDA/MDA, MY 720/6F-ODA/ODA and MY 720/6F-PDA/PDA) were studied to determine the cure cycle required for preparation of resin specimens. The bisimide cured epoxies were designed IME's (for imide modified epoxy). The physical, thermal and mechanical properties of these novel resins were determined. The levels of moisture absorption exhibited by these bisimide amine cured epoxies (IME's) were considerably lower than the state-of-the-art epoxies. The strain-tofailure of the control resin system (MY 720/DDS) was improved 25% by replacement of DDS with 6F-DDS (MY 720/6F-DDS). All of the IME resins exhibited twice the char yield of the control resin (40% char vs 20% char). Graphite fiber reinforced control (C) and IME resins were fabricated and characterized. Two of the composite systems, Celion 6000/IME-1 and Celion 6000/IME-5 where IME-1 is MY 720 cured with the BIA 6F-DDS and IME-5 is MY 720 cured with a 50:50 mixture of DDS and the BIA 6F-DDS emerged as having superior properties compared to the other Celion 6000/IME composite systems and also compared to state-of-theart graphite epoxy systems. These two systems exhibited excellent wet shear and flexural strengths and moduli at 300 and 350°F.

1. INTRODUCTION

This document constitutes the final report on a ten (10) month program to characterize novel imide modified epoxy (IME) resins cured by bisimide amine hardeners, newly developed by investigators at NASA Lewis (Refs. 1,2). State-of-the-art epoxy resins are finding wide applications as matrices in advanced fiber reinforced resin composites which are being used in aerospace vehicles as primary and secondary structural components. However, the brittle nature and poor char forming characteristics of state-of-the-art epoxy resins dictate that changes in molecular structure are necessary to improve toughness and increase char forming ability. Toughness is required for resin matrices used in aerospace structures where high strain-to-failure, durability, and reliability are of prime importance. Higher char yield epoxy resins are desirable because they would provide composites which exhibit improved retention of structural integrity in the event the composite is subjected to a fire.

1.1 Objective of the Program

The objective of this program was to characterize novel imide modified epoxy resins cured by novel bisimide amine hardeners.

1.2 Program Tasks

The work performed under this contract was accomplished in three (3) technical tasks as follows:

- Task I. Comprised preparation and characterization of nine epoxy resin systems which were prepared from tetraglycidyl methylenedianiline (MY 720) cured with a stoichiometric quantity of bisimide-amine and aromatic diamine hardeners. The physical and mechanical properties as well as char forming characteristics were determined.
- Task II. In this task, the prepreg and laminate processing parameters were investigated.
- <u>Task III.</u> The mechanical properties of the novel epoxy resins reinforced with Celion 6000 graphite fibers were determined in the dry condition and after exposure to 87% RH at 82° C to saturation. The physical properties such as glass transition temperature, density, fiber, resin and void content and fiber distribution of the laminates were also determined. In addition, nine (9) unidirectional laminates were delivered to the NASA Project Manager.

RESULTS AND DISCUSSION

2.1 Synthesis of Bisimide Amines

PDA

The structures of the bisimide amines (BIA's), the aromatic diamines from which the BIA's were synthesized and the base epoxy resin used in this program are listed in Table 1. The synthetic route used in preparing the BIA's is represented by this general equation (1)

The general procedure used in the BIA preparations consisted of refluxing a solution of the aromatic diamine (0.48 mole) and 6F (0.24 mole) in NMP for 4 hrs. The reaction mixture was then concentrated to half its volume, and poured into an ice-water mixture to yield a crude 6F-diamine product, which was washed several times with hot distilled water. The crude products were recrystallized from hot acetone-water mixture in high yields (90% or better). Elemental analyses, infrared and nuclear magnetic resonance (NMR) spectra were consistent for each product. Comparison of the differential scanning calorimetry (DSC)

, the BIA is designated 6F-PDA

thermograms, NMR and infrared (IR) spectra with the DSC, NMR and IR's of BIA's purchased from DuPont showed that these materials were almost identical. The GPC chromatograms of the UTRC prepared BIA's and of the DuPont BIA's are compared in Figs. 1 and 2. The IR's, NMR's and DSC's of each BIA synthesized in this study are shown in Figs. 3 through 5.

2.2 Composition of Bisimide Amine Cured MY 720 Epoxy Resins

Table 1 shows the structures of the uncured epoxy resin and curing agents used in preparing the epoxy resin specimens and fiber reinforced graphite imide modified cured epoxy resin composites. The designation for each material is also listed in Table 1. The composition of each resin system, including the molecular weight of each component, the mole ratio of resin to hardener(s) used throughout the study and the epoxy resin system designation are listed in Table 2. The actual weights of epoxy to hardener(s) used in the initial studies to determine the cure cycle of each system and to fabricate small resin specimens are also listed in Table 2.

2.3 Determination of Resin Thermal Behavior and Cure Cycle

The gel times and time/temperature cure relationship for each resin system (listed in Table 2) were determined. Homogeneous mixtures of the resin systems were required to determine the cure cycle. Two approaches were tested to obtain a homogeneous mixture of the curing agent and MY 720 epoxy resin. One involved the use of acetone as solvent to dissolve the mixture followed by removal of the solvent to give a solventless homogeneous powder mixture. The other approach involved heating the mixture at 120°C for 15 min to give a liquefied mixture. The solvent approach worked well for all of the nine resin systems. The second method, however, was only applicable to the MY 720/DDS resin system. Its application to the other eight resin systems involving the use of the bisimide-amine hardeners failed because of the high melting points and insolubility of the bisimide amines. Thus, the solvent method was used to mix the curing agent and epoxy resin in this study.

2.3.1 Infrared (IR) Study of Cure Reaction

The cure reaction of the nine resin systems whose compositions are given in Table 3 was studied by infrared spectroscopy. Each of the solventless and homogeneous epoxy-amine mixtures was cured in three stages at 122°C, 177°C, and 202°C between two sodium chloride salt plates for intervals of 1 hr, or longer, and the IR spectra after each time interval were recorded.

The cure process and rates of cure of the resin systems were followed by measuring the disappearance of the absorbance at 903 cm⁻¹, assigned to a fundamental vibration of the epoxy ring of MY 720. Alternatively, the cure process and rates of the cure reaction can also be measured by following the appearance

of the absorbance at 3390 cm⁻¹, attributable to the stretching vibration of an OH group formed from the reaction of the epoxy ring of MY 720 with the amine group of the curing agents. The basic cure reaction for these resins is given in Eq. (2).

Cured Resin

Because there is some evidence to indicate that the hydroxyl group also reacts with the epoxy group to form ether groups, the change in absorption due to hydroxyl is not a good measure of the cure rate or degree of cure of the resin. Therefore only the absorption due to the epoxy group at 903 cm⁻¹ was followed in this study. Assuming that the MY 720 phenyl group absorption band at 1512 cm⁻¹ is constant, all 903 cm⁻¹ absorbances were expressed as a ratio of the absorbance at 903 cm⁻¹ to the absorbance at 1512 cm⁻¹ and were plotted as a function of cure time to establish the degree and rate of cure for each resin system. The absorption ratios are listed in Table 4. Plots of the absorption ratios as a function of time at given temperatures are given in Figs. 6a and b for all the resin systems. An example of the changes in the IR which occur as a function of temperature and time for the entire cure study is given in Fig. 7 for the IME-1 resin system. Infrared spectra for the other IME resin systems at RT and after virtually complete cure are given in Figs. 8-15.

Inspection of Fig. 7 reveals that a rapid chemical conversion occurred at 122°C for 1 hr followed by 177°C for another hour. Little change occurred upon further curing at 177°C from 2 to 5 hrs, but after treatment at 202°C for up to 2.5 hrs, almost complete disappearance of the epoxy group appears to have occurred. Postcuring for 24 hrs does not appear to reduce the absorption due

to the epoxy group relative to the 2.5 hr postcure. All of the resin systems required similar treatment for complete cure, but systems IME-6, 7 and 8 exhibited greater room temperature reactivity than the other IME resin systems. This is illustrated by the low values of the absorption ratio at room temperature for these resins. The graphs of absorption ratios (epoxy/aromatic) as a function of time at given temperatures (Figs. 6a & 6b) reveal some unique differences in these IME resin systems. Resin systems C and IME-1 which have the sulfone amine functionality in the curing agent are less reactive than the other IME systems which are derived from MDA, ODA and PDA. Another significant point, is that these latter systems appear to have similar reactivity with IME-3 which is perhaps the most reactive of this series. This is also true for IME-7 which contains 6F-ODA and ODA.

Figures 6a and 6b further show that **for** most of the IME resins no differences in the cure state exists after 2 hrs or 5 hrs at 177°C, suggesting that only 2 hrs is required at this temperature and further suggesting that higher temperatures are needed for additional cure. A continuous slow cure appears to occur in the IME-2 and -3, -7 and -8 resin systems at this temperature. Figures 6a & 6b also show that after 2.5 hrs at 202°C, cure is virtually complete, since the absorption ratio of epoxy/aromatic is approaching zero and very little change in this ratio occurs after 24 hrs at 202°C. Although the IR studies suggest that treatment at 202°C for 2.5 hrs causes complete cure, to obtain optimum 150°C and 177°C shear and flexural properties (section 2.5.7) a 24 hr postcure was required.

2.3.2 Differential Scanning Calorimetry (DSC) Studies

The DSC thermal behavior of the nine uncured MY 720/amine mixtures are shown in Figs. 16a-i, and the data are summarized in Table 5.

Generally the uncured resins exhibit two major exotherms in the temperature range between 25° to 300°C, which are most likely related to the cure process. A third exotherm occurs above 300°C. This is related to decomposition of the cured resins. This view is supported by the thermogravimetric (TGA) studies described in Section 2.4.3. In each case, a weight loss is initiated at about 290°C and becomes significant between 300° to 450°C. Based on the DSC behavior IME-1 and -5 resin systems appear to exhibit similar cure characteristics. The first peak exotherm in both cases is only 120°C compared to approximately 200°C for IME-2, -3, -4, -6 and -7, and the second peak exotherm for IME-1 and -5 is also lower than the peak exotherm of the above mentioned resins. Resins C and IME-8 exhibit similar DSC behavior. In resins C and IME-8 the first exotherm peak appears at 155°C, lower than the other resin systems, except for IME-1 and -5. Moreover, the second exotherm peak for these two systems is also lower than the other resins, (except for IME-1 and -5). The DSC behavior of the IME-8 system is not expected in view of the DSC characteristics of IME-8 which

contains 6F-PDA, while IME-8 contains 6F-PDA and PDA. This suggests that 6F-PDA is more reactive than PDA. An alternative explanation is that exotherm peak of IME-8 is lower than expected because considerable reaction has already occurred at room temperature. In studies of the behavior of this resin system in bulk processing to yield resin discs and composites suggests that the latter explanation accounts for the DSC behavior. Processing characteristics to fabricate resin specimens are discussed in section 2.4.1.

The DSC behavior of the IME resins can be categorized into three groups. The first group, IME-1 and -5 showing low initial cure and low exotherm peaks (120°C), the second group IME-2, -3, -4, -6, -7, showing higher initial cure and higher exotherm peaks (200°C), and a third group resin C and IME-9 exhibiting the first exotherm peaks midway between the first and second group of resins. The DSC study suggests that for each system cure occurs at the initial starting temperature of the first exotherm and that a cure cycle for each system must consider this initial temperature.

2.3.3 Resin Gel Characteristics

The gel characteristics of the control resin and the eight IME resins were determined by observing the changes in physical appearance which occur while heating the powder (except for resin C) at two temperatures, 122°C and 150°C for various time periods. The results are summarized in Table 6.

2.3.3.1 122°C Results

Resin C did not gel up to 1 hr at 122°C, indicating that a temperature higher than 122°C is required for curing of this resin system. Resins IME-1, -2, -3, -4 and -7 gelled rapidly within 4 to 13 min time range and IME-5 required 60 min for gelation at 122°C. IME-8 showed no melting at this temperature. The IR spectra of these two resins indicated that these resins were partially cured during the process of evaporating the MEK solvent used in preparing the homogeneous resin mixtures.

2.3.3.2 150°C Results

At 150° C, resin C and IME-5 showed convenient gel times of 41 and 25 min, respectively. This temperature may be used for initial cure of those two resin systems. This temperature, however, is not suitable for curing IME-1, -2, -3, -4 and -7 resin systems, since their gel times ranging from 2 to 8 min are too short for easy resin processing. It appears from these studies (at 122° and 150°C) that a lower initial process temperature is required for resin systems IME-1, -2, -3, -4, and -8, perhaps closer to 100° C.

2.3.3.3 Under Contact Pressure

Resin specimens were placed in a closed mold at contact pressure, the temperature was raised from RT to the temperatures indicated in Table 6, and held at this temperature under contact pressure for the time periods indicated. This yielded an approximate gelation temperature/time cycle at contact pressure for each resin.

2.3.4 Melt Behavior of IME Resins

The capillary tube melt behavior of the IME-1 through -8 resin systems is listed in Table 7. Attempts to prepare resin specimens by heating the powder to the temperatures indicated resulted in sintered, porous solids, instead of glassy, clear solids observed in the melting point capillary. Apparently, in a mold poor heat transfer through the powder and cure of the outer surface of the powder prevents melting and consolidation. Resin specimens were prepared by fast heat-up under contact pressure, as described in section 2.4.1.

2.3.5 Investigation of Cure Cycles

Based on gel characteristics, DSC characteristics and melt behavior, several cure cycles incorporating pressure were investigated in attempts to prepare neat resin specimens (2.54 cm diameter x $^{\sim}.63$ cm thick) for basic physical and thermal property measurements. Table 8 summarizes the cure cycles investigated.

In each cure cycle, the solventless and homogeneous uncured powdered resin mixtures were treated at the initial temperature indicated (122°C or 177°C) based on gelation experiments (Table 6), by placing the mold containing the powder in a preheated press and immediately applying 0.69~MPa to consolidate the specimens. Pressure was maintained under these conditions for 1 hr, followed by a temperature increase as noted in Table 8. Temperature and pressure were maintained for the time periods indicated. The rate of temperature rise between temperatures was $2-3^{\circ}\text{C/min}$. Each resin responded differently to the treatment, yielding in most cases glassy specimens with considerable voids or sintered-like specimens.

Resin C is a liquid under these conditions allowing resin specimens to be cured in molds without pressure. For IME-1 and -5, pressure caused squeeze-out of the resins from the mold, indicating that these two systems are viscous liquids near gelation. IME-2, -3, -4, and -7 yielded porous specimens. Resins IME-4, -7, and -8 appeared to be almost completely cured even before exposure to any of the cure cycles. This was indicated by the solubility test and the IR spectra of the solventless resin mixtures. More evidence for this is that even at high pressure 3.45 MPa and high temperature (210°C), no melting or consolidation of the resin occurred. Considerable advancement of these resins

must occur during solvent evaporation at 60° C in vacuum. Except in the cases of C, IME-1 and IME-5, the use of pressure was identified to be essential in forming consolidated resin specimens.

The DSC thermograms of each resin specimen cured by the various cure cycles showed that in all cases, cycles 2, 4 and 6 which include additional cure of each resin at 204°C for 24 hrs over the initial lower temperature cycle (cycles 1, 3 and 5) increase the initial softening temperature of the resin by 20° to 40°C depending on the system. Moreover, for the cure cycles which included a 24 hr postcure, the endotherm range did not vary significantly.

Based on these experiments, it was found that preparation of IME powders of resins IME-4, -6, -7, and -8 for resin specimen fabrication must be carried out at room temperature within a 2-3 hr period. Higher temperatures and longer times cause "B" staging, or advancement of the resin, which prevents consolidation of the powder into void free specimens. For the other resin systems, powder can be prepared by solvent evaporation at room temperature followed by vacuum treatment at 70°C for 2 hrs. Although data from capillary melt behavior and open mold gel characteristics of resin powders provide a guide to resin specimen preparation, or even composite fabrication, the data do not always correlate with fabrication of resin specimens from powder. As mentioned in section 2.3.4, this is most likely due to thermal lag experienced by bulk powder in a metal mold relative to small quantities of powder in capillary tubes or thin walled aluminum cups. Based on these cure cycle studies, the recommended cure cycle to prevent formation of voids for preparation of resin specimens involved fast heat up to the point where flow is observed, followed by the application of pressure at the gel point.

1

2.4 Resin Characterization

2.4.1 Disk Fabrication

For the resin systems under study, only the control resin is capable of being fabricated into neat resin specimens by pouring the liquid resin mix at 150°C into preheated (150°C) molds. All the other resin systems are solid mixtures at room temperature and efforts to form liquids as one raises the temperature, either slowly or rapidly, in vacuum or at ambient pressure to some softening or melt temperature results in a cured sintered-like specimen or a voidy glassy specimen. As a result, ASTM tensile specimens could be fabricated only for resin C. Miniature tensile specimens were fabricated for IME-1 and IME-5 resin systems by vacuum processing techniques described below. Neat resin disks 2.54 cm diameter x 0.48 cm to 0.635 cm thick samples of IME-1 through ~8 were fabricated by compression molding techniques or by vacuum heat treatment starting with solvent-free resin powder. The conditions for preparing these specimens are listed in Table 9.

2.4.2 Physical Properties of Cured IME resins

2.4.2.1 Density, Coefficient of Thermal Expansion and Cure Shrinkage

The density, coefficient of thermal expansion, and shrinkage due to cure of each IME resin are listed in Table 10. The IME-1 through -8 resins exhibit higher densities than typical epoxies due to the 6F-diamine curing agent. The shrinkage and coefficient of thermal expansion values are typical of epoxy resins.

2.4.2.2 Resin Moisture Absorption

Small sections (0.64 cm section of a 2.54 cm diameter specimen) of each resin system were subjected to three conditions of moisture: distilled water at RT for 24 hrs, 87% RH, 82°C to saturation (approximately eight days) and boiling distilled water for 72 hrs. The results of the moisture gained due to these exposures are listed in Table 11. A comparison of the moisture absorbed by the IME resins for all three conditions with the moisture absorbed by a typical epoxy under the same conditions shows that the IME resins absorb considerably less moisture.

2.4.3 Resin Thermal Properties of Epoxy Resins

2.4.3.1 Differential Scanning Calorimetry (DSC), Thermomechanical Analyses (TMA) and Thermogravimetric Analysis (TGA)

DSC, TMA and TGA thermograms of the IME resin are shown in Figs. 17-19. Data derived from the DSC, TMA and TGA thermograms of the IME resins are listed in Table 12. Where they appear, the first and second peaks of the DSC endotherms are listed for each resin. The second peak approaches the glass transition temperature of the resin as defined by TMA, but the correlation between the second DSC endotherm peak (Tg) and the glass transition temperature (Tg) of the resin is poor. The weight percent loss of each resin system at 300°C and 800°C (in air) based on TGA data is listed in Table 12. The weight loss experienced by the IME resins is considerably less than a typical epoxy.

2.4.3.2 Resin Char Yields

The resin char yields were determined by two techniques; (1) exposure in a muffle furnace at 800°C for 3 min, and (2) TGA weight loss up to a temperature of 800°C in air. The data listed in Table 13 shows that the char yields of the IME resin are considerably greater than the control resin and a typical epoxy.

2.4.4 Resin Mechanical Properties

2.4.4.1 Tensile Properties

Because of the difficulties encountered in fabricating resin specimens from the IME resin systems, miniature resin systems $5.08~\rm cm$ long x $0.635~\rm cm$ wide, having a $0.32~\rm cm$ reduced section in the $1.27~\rm cm$ gage length were fabricated for IME-1 and -5. Standard ASTM resin specimens were prepared for the IME-1 control resin, C. The results of the tensile properties are listed in Table 14. Resin system IME-1 containing 6F-DDS has a higher strain at failure than the control resin with DDS or IME-5 with 6F-DDS and DDS.

2.4.4.2 Compression Strength

For resin samples IME-2, -3, -4, -6, -7, and -8 small samples of resin were cut from the 2.54 cm diameter disks for compression measurements. These specimens measured 1.90 cm long x 0.635 cm x 0.48 cm to 0.635 cm. Similar size specimens were cut for resin C and IME-1 and -5. The results of the compression strengths are listed in Table 15. The compression strengths of the IME resins compare favorably with a typical epoxy and with the control resin. The high compressive strength of the IME-8 resin relative to the other resins is noted.

2.5 Characterization of Celion 6000/IME Epoxy Resin Composites

2.5.1 Fabrication of Prepreg

Prepregs were fabricated by drum winding epoxy sized Celion 6000 graphite fibers and brush application of an acetone solution of the resin to the dried fiber, calculated to yield a composite with a fiber volume of $60 \pm 2\%$. The prepreg tapes were air dried on the drum at room temperature, then vacuum dried at 70°C for 2 hrs to remove traces of acetone, except prepregs containing IME-4, 6, 7 and 8. These were dried at room temperature in vacuum for 2 hrs, instead of 70°C to prevent advancement of the resin. The plies were stacked unidirectionally and processed by autoclave or compression molding techniques, as described below.

2.5.2 Processing Parameters for Celion 6000 Epoxy Resin Composites

2.5.2.1 Autoclave Processing Studies

The prepregs were cut 15.24 cm x 20.32 cm and the plies were placed on an aluminum plate previously sprayed with Teflon release agent, and the vacuum tube was placed in position. The stacked plies were surrounded by 1.27 cm width of 0.635 cm thick felt. A Teflon release ply followed by a glass bleeder

cloth were placed on top of the stacked plies, and finally the system was made vacuum tight in a Kapton bag. The autoclave process parameters utilized for each autoclaved process composite are listed in Table 16. Composites were postcured at 204°C for 3 or 24 hrs after some properties were measured in the as-fabricated condition.

2.5.2.2 Compression Molding Processing Studies

A series of 10 ply 10.1 cm x 15.24 cm x 0.254 cm composites were fabricated by compression molding techniques to develop processing parameters for fabrication of larger composites. An open ended mold was used to follow the gelation point by probing the laminate as a function of time at specific temperatures. This information is required to produce void free compression molded composites. Of critical importance in the fabrication process is the time/temperature parameter for the application of pressure in the initial stages of gelation. Based on the experience with these composites, another series of larger composites (15.24 cm x 25.4 cm x 0.254 cm) were fabricated to a fixed volume using scops on the mold to control composite thickness and fiber content. The composites fabricated and the conditions used in the fabrication process are listed in Table 17. These composites were molded to a constant volume for better control of the final composition (fiber 60 vol %, resin 40 vol %).

2.5.3 Physical Properties of Celion 6000 Epoxy Resin Composite

2.5.3.1 Composition, Density and Ply Thickness

The density, theoretical density, experimental resin, fiber and void volume and composite ply thickness are listed in Table 18 for the autoclave molded 10 ply composites (15.24 cm \times 25.4 cm \times ~.254 cm). This calculation assumes zero void. For a 70 fiber vol % composite, a void content of 2% can cause a density decrease of 0.02 g/cc, while for a 60 fiber vol % composite, a void content of 2% can decrease the density by 0.05 g/cc. Of significance in the data in Table 18 is the high void content (2 to 5%) and low composite ply thicknesses, in mils/ply. Both high void and low ply thickness (high fiber content) tend to lower the shear strength. The density, calculated resin and fiber volume percents, experimental resin, fiber and void volume percents and composite ply thickness for the compression molded 9 ply composites (15.24 cm \times 25.4 cm \times ~0.254 cm) are listed in Table 19. In this series the fiber and resin weight before processing were determined, and the final composite weight after removal of excess resin flash was determined to calculate a resin and fiber volume. assuming zero void. The calculated and experimental values are within experimental error.

2.5.4 Moisture Absorption Properties of Celion 6000 Epoxy Resin Composites

The autoclave and compression molded fabricated composites were subjected to three conditions of moisture: immersion in distilled water at room temperature for 24 hrs, 87% RH at 82°C to saturation (approximately 8 days), and boiling distilled water for 72 hrs. The results of these moisture absorption studies are listed in Table 20 for each moisture condition. Flexure specimens were used to determine moisture absorption for each condition. To determine size effects in moisture absorption shear specimens were exposed to the 87% RH, 82°C condition to compare with the flexure specimens. In general, the percent moisture absorption is greater for the smaller specimen because the surface to volume ratio is much greater in the shear specimen than in the flexure specimen.

2.5.5 Composite Thermal Properties

2.5.5.1 Thermomechanical Analysis (TMA) and Thermogravimetric Analysis (TGA)

TMA and TGA thermograms of the Celion 6000 composite series are shown in Figs. 20-21 respectively. The glass transition temperatures (Tg) of each composite system as determined by TMA analysis, and the weight losses at 300°C and 800°C by the TGA method are listed in Table 21. A comparison of the Tg's derived from composites (Table 21) with Tg's derived from resin specimens (Table 12) shows that the Tg's derived on composites compare favorably with those derived from neat resins. The agreement between the two types of specimens (autoclave and compression molded) is fairly good. The presence of a first transition in a composite containing a particular IME resin and the absence of a first transition of another composite containing the same IME resin is not understood. Also, the variation of Tg's between different composites of the same resin is not understood.

2.5.5.2 Char Forming Properties and Fiber Containment Characteristics

Two techniques were utilized to determine the char forming characteristics of the Celion 6000 epoxy resin composites. The first technique utilized the TGA method, whereby the weight loss as a function of temperature was determined up to a temperature of 800°C in air or higher. In the second technique, the char yield was determined after a 3 min exposure in a muffle furnace at 800°C. The results of the tests listed in Table 22 show that about all IME systems exhibit good char forming capabilities, with IME-1 and -3 exhibiting better char yield than the other resin systems. For the composites investigated, the fiber containment yield of the composites is essentially 100%, showing that the char encapsulates the fiber, preventing release to the atmosphere.

2.5.6 Microscopic and Ultrasonic Examination of Celion 6000 Epoxy Resin Composites

Polished transverse cross sections of composites 33-C, 20-IME-1, 34-IME-1, 32-IME-2, 28-IME-3, 23-IME-4, 29-IME-4, 24-IME-5, 30-IME-5, 25-IME-6, 31-IME-6, 26-IME-7 and 27-IME-8 were examined by optical microscopy. Composite quality in terms of fiber distribution, fiber content and void content was assessed. Optical micrographs of each composite system at 15X and 200X were prepared. Except for composites 20-IME-1, 23-IME-4, 25-IME-6 which showed a considerable quantity of surface voids, the quality of all composites with respect to voids, fiber content and fiber distribution is excellent. Optical micrographs of the above mentioned composites are shown in Figs. 22a-m.

Ultrasonic "C" scan of the above mentioned composites was performed at a frequency of 3.5 MHz. The "C" scan traces of these composites agreed with the optical micrograph examinations. The "C" scan traces of composites 20-IME-1, 23-IME-4 and 25-IME-6 revealed the presence of considerable defects, attributed to voids. The "C" scan traces of the remaining composites suggested that these composites were free of defects or voids, in agreement with optical microscopy and void content determination.

2.5.7 Mechanical Properties of Celion 6000 Epoxy Resin Composites

2.5.7.1 Interlaminar Shear Properties

The interlaminar shear strength (ILSS) properties of each composite system in the dry state are listed in Tables 23, 24, 26, 27, and 29 while the ILSS properties after moisture exposure are listed in Tables 25, 28, and 30. ILSS data for autoclave molded composites is represented in Tables 23, 24, and 25, while ILSS data for compression molded composites is listed in Tables 28 through 32. In general, except for composites which contain visible surface defects or internal defects (20-IME-1, 30-IME-5, 38-IME-8, 23-IME-4) the range of dry ILSS strength at RT (82.4 MPa to 103 MPa), at $150\,^{\circ}\mathrm{C}$ (41.2 to 61.8 MPa) and at $177\,^{\circ}\mathrm{C}$ (34.3 to 54.9 MPa) is considered acceptable for novel systems. These values are equivalent to state-of-the-art Celion 6000/epoxy resin composite systems. Another generalization is that the shear strengths of autoclave molded and compression molded composites are approximately equivalent. Postcuring (3 hrs or 24 hrs) has no effect on RT ILSS properties, as expected (see Table 25). However, a 24 hr postcure at 204°C caused considerable improvement in the dry 150°C and 177°C shear strength as can be noted by comparing data in Table 29 with data in Table 27. Therefore, postcuring is necessary in order for these composite systems to have a 177°C temperature capability. The effect of moisture on RT and elevated temperature shear properties can be seen by comparing dry strength (Tables 24, 27, 29) with wet strength (Tables 25, 28 and 30). Composite systems with resins IME-1 and IME-5 exhibited the best wet strength retention of all the composite systems investigated.

2.5.7.2 Flexural Properties

The flexural properties of each composite system in the dry state are listed in Tables 31, 32, 34, 35, 37 and 38, while the same properties after moisture exposure are listed in Tables 33, 36, and 39. In general, compared to state-of-the-art epoxies, the RT flexural properties are considered acceptable. However, only composites containing the novel resins IME-1 and IME-5 exhibited acceptable 150°C and 177°C flexural strengths relative to state-ofthe-art Celion 6000/epoxy resin composites. However, it should be cautioned that the composites listed in Tables 32, 33 and 34 failed in compression, suggesting that the resin was yielding. A more brittle resin would cause the composites to fail in tension or shear. Except for composites which contain visible or internal defects (20-IME-1, 23-IME-4, 30-IME-5, 38-IME-8), the flexural strengths exhibited by the compression molded composites (Table 38) are superior to the flexural strengths exhibited by the autoclave molded composites (Table 32). Postcuring of the composites for 24 hrs has no apparent effect on the RT flexural properties, but caused a large increase in the 177°C flexural strengths, as noted by comparing Table 35 with Table 38.

The effect of moisture on the flexural properties at RT and elevated temperatures can be determined by comparing the dry flexural strength data (Tables 32, 35 and 38) with the wet flexural data for the corresponding composites (Tables 33, 36, 39). Similar to what was found in the study on the effect of moisture on ILSS, examination of the flexural strength data reveals that composites containing novel resins IME-1 and -5 exhibited greatest resistance to degradation of RT, 150°C and 177°C flexural strength after exposure to moisture.

EXPERIMENTAL

3.1 Synthesis of Bisimide Amines (BIA's)

The synthesis, purification, and characterization of the four required bisimide amine (BIA's) hardeners, are described below.

3.1.1 4,4'-[2,2,2-Trifluoro-1-(trifluoromethyl)ethylidene]bis[\underline{N} -(\underline{p} -sulfanilylphenyl)phthalimide],(6F-DDS)

The synthetic reaction for this compound is depicted in Equation (3).

2
$$H_2N$$

DDS

 CF_3
 CF_3

To a stirred solution of DDS (0.50 mole, 124.2g) under refluxing conditions in 350 ml of NMP, a solution of 6F (0.25 mole, 113.6g) in 350 ml NMP was added over 1/2 hr period. The reaction mixture was stirred and refluxed for 4 hrs. The solution was then concentrated under vacuum (0.5 mm Hg) to half its initial volume, and allowed to cool to room temperature. The solution was poured, while stirring into an ice-water mixture (350g-350g). The tan solid material which precipitated was filtered and washed several times with 100 ml of distilled water. After drying in vacuum at 60°C overnight, a crude yellow solid was obtained. It was purified by dissolving the solid in hot acetone, and after cooling to room temperature, precipitated by the addition of cold distilled water. The precipitate was collected by suction filtration and washed several times with distilled water until the filtrate appeared clear and colorless. A yield of 198g (91% yield) of pale yellow solid was obtained. The purity was estimated to be 90% as determined by GPC (Fig. 1); IR (chloroform

solution) (Fig. 3); 3495 (w, amine N-H), 3400 (m, amine N-H), 1780 (m, imide C=0), 1725 (s, imide C=0), 1300 (s, sulfone S=0), 1230 (bs, sulfone S=0), 1150 (s, sulfone S=0); NMR (D_6 acetone) (Fig. 4): δ , 2.75 (2H, H₂O), 2.1 (6H, acetone), 5.15 (4H, NH₂), 6.6-6.9 (m, H aromatic H), 7.50-8.35 (m, 16 H, aromatic H). Endotherms at 105°C and 240°C as determined by DSC (Fig. 5).

Calc. for $C_{43}H_{26}N_{4}F_{6}S_{2}O_{8}$ (MW 904.8): C, 57.08; H, 2.88; N, 6.20; F, 12.61; S, 7.08 Found: C, 56.58; H, 3.33; N, 6.14; F, 12.86; S, 6.99.

3.1.2 4,4'-[2,2,2-Trifluoro-1-(trifluoromethy1)ethylidene]bis $[\underline{N}-[\tau-(\underline{p}-aminopheny1)-\underline{p}-toly1]$ phthalimide], (6F-MDA)

This compound is prepared according to Equation (4).

To a stirred solution of MDA (95.2g, 0.48 mole) in 350 ml of NMP, a solution of 6F (108g, 0.24 mole) in 350 ml of NMP was added over 1/2 hr period. The reaction mixture was stirred and refluxed for 4 hrs. The solution was concentrated under vacuum (0.5 mm Hg) to half of its initial volume. Upon cooling to room temperature, the concentrated solution was poured into ice-water mixture. The brown solid material which precipitated was filtered and washed seven times with 100 ml distilled water. After drying in vacuum oven at 60°C overnight, this yielded crude brown product (192.4g, 99.6% yield). The crude product was dissolved in a minimum quantity of hot acetone. After cooling to room temperature, cold distilled water was added to the acetone solution. The precipitates were collected by suction filtration and washed several times with distilled water until the filtrate appeared clear and colorless. Drying of the recrystallized product gave an analytical sample of 6F/MDA (154.5g, 80% yield): purity 99% as

determined by GPC (Fig. 1); IR (chloroform solution) (Fig. 3); 2485 (w, amine N-H), 3380 (m, amine N-H), 1780 (m, imide C=0), 1720 (s, imide C=0). NMR (CDCl₃) (Fig. 4); δ 3.2 (s, 2H methylene group), 3δ -42 (m, 4H, NH₂), 6.4-7.5 (m, 16H, aromatic H), 8.0 (s, 6H, aromatic H), signals at δ 1.3-2.9 are impurity peaks. Melting point 230°C as determined by DSC (Fig. 5).

Calc. for $C_{45}H_{30}N_{4}F_{6}O_{4}$ (MW 804.7): C, 67.16; H, 3.73; N, 6.97; F, 14.18 Found: C, 66.50; H, 4.00; N, 7.09; F. 14.51.

3.1.3 4,4'-[2,2,2-Trifluoro-1-(trifluoromethyl)ethylidene]bis[\underline{N} -[\underline{p} -(\underline{p} -aminophenyoxy)phenyl]phthalimide](6F-ODA)

This compound was prepared in accordance with Equation (5).

2
$$H_2N$$
 \longrightarrow O \longrightarrow

A solution of ODA (196.23g, 0.98 mole) in 400 ml of NMP was added to a 2000-ml four-necked round-bottom flask equipped with a stirrer, a reflux condenser, an addition funnel, and a thermometer. A solution of 6F (216.0g, 0.49 mole) in 600 ml of NMP was (dropwise) added over a 1 hr period to the ODA solution which was stirred and held at reflux. The progress of the reaction was followed by measuring the optical densities of the 6F anhydride band at 1840 cm⁻¹ and the 6F/ODA imide band at 1720 cm⁻¹. The reaction was essentially complete in 4 hrs refluxing time. After 4 hrs, the reaction solution was concentrated under reduced pressure (2 mm Hg) to half of its original volume. Upon cooling to room temperature, the concentrated solution was poured into 1000 ml distilled water to precipitate yellowish products. The fine crystalline materials were suction filtered, washed with distilled water, and dried in a

vacuum oven at 60°C overnight to give 388g (98% yield) of crude products. The crude products were recrystallized from acetone-water to afford 356.3g (90% yield) off-white recrystallized products. The GPC chromatogram of the recrystallized materials (Fig. 2) revealed two major peaks (99%) and traces of starting amine indicating a compound of good purity. The IR, NMR, DSC, and elemental analysis of the recrystallized products were determined and are presented as follows:

IR (CDCl $_3$) (Fig. 3):

3480 (w, amine N-H), 3370 (m, amine N-H), 1780 (m, imide C=0), 1720 (S, imide C=0), 1220 (bs, ether C=0).

NMR (CDCl $_3$) (Fig. 4): δ 3.50 (bs, 4H, NH $_2$), 6.50-7.60 (m, 16H aromatic H), 7.8-8.2 (m, 6H, aromatic H). Note that the signals in the region of δ 2.20 to 3.00 are probably due to solvents and impurities.

DSC (Fig. 5): Endotherms at 90, 165, 215, and 325°C.

Elemental Analysis:

Calc. for $C_{43}H_{26}N_4F_6O_6$, (MW 808.6): C, 63.86; H, 3.22; N, 6.93; F, 14.11

Found: C, 64.27; H, 3.86; N, 6.69; F, 13.80

3.1.4 4,4'-[2,2,2-Trifluoro-1-(trifluoromethy1)ethylidene]bis[\underline{N} -(\underline{p} -aminopheny1)phthalimide](6F-PDA)

6F/PDA 97% yield

The synthetic reaction of this compound is shown in Eq. (6). The detailed synthetic procedure followed the same method as described in Section 3.1.2 for 6F-MDA. To a stirred and refluxing solution of PDA (81.2g, 0.75 mole) in 350 ml of NMP, a solution of 6F (165.2g, 0.37 mole) in 700 ml of NMP was rapidly added dropwise. After work-up followed by recrystallization from acetonewater, this reaction afforded 224g (97% yield) of 6F/PDA in dark purple color:

Purity 99% as determined by GPC (Fig. 2).

NMR (D_6 acetone) (Fig. 4): δ 3.8 (bs, 4H, NH₂), 6.7-7.6 (m., 8H, aromatic H), 7.90-8.3 (d, 6H, aromatic H). Note that the other signals between 0.7 to 2.2 are probably due to solvents and impurities.

M.P. 330°C as determined by DSC (Fig. 5).

Elemental Analysis:

Calc. for $C_{31}H_{18}N_4F_6O_4$, (MW 624.5), C, 59.62; H, 2.88; N, 8.97; F, 18.27

Found: C, 59.79; H, 3.26; N, 8.57; F, 17.99

3.2 Preparation of Homogeneous Resin Powders

Except for the base resin system MY 720 (DDS) (IME-1), homogeneous resin powders were prepared by dissolving the epoxy resin MY 720 and curing agents in acetone, and concentrating the mixture in a hood at room temperature to a solid powder. Because of the high reactivity of imide epoxies, residual solvent was removed at room temperature in vacuum over a 2 hr period. The homogeneous powders prepared in this manner were used for the DSC, TGA, and resin fabrication studies. The stoichiometric quantities of each component used in these studies and in the infrared spectroscopy studies are listed in Table 3.

3.3 Resin Cure and Fabrication Studies

3.3.1 Cure Studies

The techniques utilized and properties measured to determine the cure cycle of each IME resin system were infrared spectroscopy (IR), differential scanning calorimetry (DSC), gelation temperature/time behavior, and melt behavior. A Perkin-Elmer Model 451 infrared spectrometer was used in the infrared studies. Films of each resin system were deposited on a sodium chloride salt

plate by concentration of a solution of the resin in methylethylketone. The film was treated for certain temperature/time sequences listed in Table 4. After each cure treatment, an infrared spectrum was taken. The thermal behavior of each uncured resin powder was followed by DSC, gelation experiments, and melt behavior. A DuPont 990 thermal analyzer attached to DuPont differential scanning calorimeter was used to make the DSC studies. A small quantity (5-10 mg) of powder was used for each DSC scan.

For the gelation temperature/time experiments, with and without pressure, a small quantity ($^{\circ}0.5g$) of powder was placed in a thin walled aluminum dish, and placed on a hot plate already set at 122°C or 150°C. The time required for the powder to gel at 122°C or 150°C by probing and observing the flow behavior was determined. Similar experiments were carried out in a press preheated to $10^{\circ}C$, except contact pressure was applied to the powder immediately after it was placed in the press.

3.3.2 Fabrication Studies

Tensile specimens of the control resin were prepared by pouring a solution of the MY 720/DDS system in open molds (ASTM D638-68, Type I size) and subjecting the specimens to the cure cycle listed in Table 9. For the other resins, a compression molding technique was utilized. The resin powder (5.0g) was placed into a 2.54 cm diameter mold. The assembly was placed into a preheated press, a pressure of 6.89 MPa was applied to consolidate the powder. Pressure was released, and the specimen was then compression molded according to the details in Table 9. In addition to 2.54 cm diameter resin disks, 3.81 cm x 5.08 cm x 0.635 cm resin specimens of IME-1 and -5 were prepared, also according to the details in Table 9.

3.4 Characterization of IME Epoxy Resins

3.4.1 Physical Properties

Density was determined by measuring the volume of a symmetrical sample, and then determining the weight of the sample. The density was calculated as follows: density = weight in grams/volume (cc) = g/cc. The cure shrinkage of each resin system was determined as follows: % shrinkage = diameter of mold (RT) - diameter of resin spec (RT)/diameter of mold (RT). The coefficient of thermal expansions were determined on 0.47 cm x 0.47 cm to 0.64 cm x 1.90 cm x 2.54 cm length specimens cut from the 1" diameter disks by dilatometric techniques. A Theta Industries Dilatronic II Research Model Dilatometer was used.

3.4.2 Thermal Properties

A DuPont 990 thermoanalyzer equipped with a 943 thermomechanical analyzer (TMA) and a DuPont thermogravimetric analyzer (TGA) were used to determine the glass transition temperature (Tg) and weight losses in air as a function of temperature of each resin specimen. The DSC behavior was also determined on a DuPont 990 thermoanalyzer equipped with a DuPont differential scanning calorimeter (DSC).

The aerobic char yield of each resin sample was determined in air by the TGA technique up to a temperature of 800° C. A C&M high temperature muffle furnace was also used for determination of aerobic char yield. The sample was placed in the oven at 800° C for a period of three (3) minutes. The char yield was determined as follows: % resin char yield = wt char after burning X100/wt resin before burning.

3.4.3 Mechanical Properties

Tensile specimens of the control resin were prepared according to ASTM D638-68, Type I size, and measured according to ASTM D638-68 at a crosshead speed of 0.05 in/min. Miniature tensile specimens of IME-1 and -2 were cut from 3.81 cm x 5.08 cm x 0.635 cm coupons. Final dimensions of the test specimens were 5.08 cm long x .635 cm wide, having a 0.32 cm reduced section in the 1.27 cm wide gage section. The samples were tensile tested at a crosshead speed of 0.127 cm/min.

The samples used for coefficient of thermal expansion measurements were also used for the compression strength tests. These specimens measured 0.48 cm x 0.48 cm to 0.635 cm x 1.90 cm x 2.54 cm long, and were cut from the 2.54 cm diameter disks. Except for the sample size, the samples were tested according to ASTM D695-69 at a crosshead speed of 0.127 cm/min.

3.5 Characterization of Celion 6000 Epoxy Resin Composites

3.5.1 Celion 6000/IME Tape and Composite Fabrication

For each composite specimen fabricated, a calculated and measured quantity of epoxy resin was used to give a composite with 60 vol % fiber and 40 vol % resin. This was accomplished by applying , by brush, a solution of the resin in methylethylketone to a prewound 15.24 cm or 10.16 cm x 43.2 cm Celion 6000 dry tape. A 10% excess of resin was applied to account for loss in transfer and resin bleed-out during laminate fabrication. After application of the resin solution to the dry tape, the tape was allowed to stand at room temperature

for 2 hrs. For C, 1, 2, 3, and 5 resin system, trace solvent was removed in vacuum at 60°C for 2 hrs. For IME-4, -6, -7, and -8 resin system trace solvent was removed at room temperature in vacuum for 2 hrs. The tape was cut in plies and stacked on a plate for autoclave processing or in a mold for the compression For the autoclave technique, the plies were stacked on a molding process. Teflon sprayed 30.5 cm x 30.5 cm x 0.64 cm aluminum plate. This was surrounded by wide bleeder felt. One sheet of a Teflon coated glass scrim cloth was placed on the top ply, followed by one sheet of heavy duty glass cloth fabric. Adjacent to one side of the plies a 0.635 cm ID copper tube was fixed to the felt with copper wire, extending about 20.32 cm into the composite assembly and 15.24 cm outside of the assembly. A thermocouple for temperature measurements was placed along side the copper tube extending into the laminate. Kapton polyimide film was placed over the assembly and sealed into position with elastomeric sealant tapes to provide a vacuum tight assembly. An aluminum plate was placed on top of the assembly. The system was evacuated at room temperature for an hour, and then placed in a preheated press.

3.5.2 Composite Characterization Techniques

3.5.2.1 Physical Properties

The density of each composite was determined by the liquid displacement technique. Fiber, resin and void volume was determined by the acid digestion method. Optical micrographs were determined on polished cross section of 2.54 cm wide specimens.

3.5.2.2 Description of Experimental Method for Ultrasonic C-Scans of Composite Panels

Ultrasonic C-scans were performed on the composite panels to determine their structural integrity and homogeneity. These tests were carried out in a water medium at a frequency of 3.5 MHz using a reflector plate technique shown in Fig. 23. The ultrasonic energy emitted by the transducer passes through the panel, is reflected off an aluminum plate, and then passes back through the panel where it is received by the same transducer. The amplitude of this received signal is proportional to the structural properties of the composite. Quantitative amplitude modulated C-scans were performed. The output of these tests is a 'hills and valleys' map of the ultrasonic signal as it varies from position to position on the panel. To insure that the C-scans are comparable from specimen to specimen, system gain and alignment are calibrated using an aluminum plate 0.32 cm thick before running each composite panel.

3.5.2.3 Thermal Properties

The thermal properties of composites were determined by the same procedures used on the resins, described in section 3.3.2. The char yields were determined by the technique described in 3.3.2. The following calculation was used for composites charred in the muffle furnace.

% resin char yield =
$$\frac{\text{Wt char after burning}}{\text{Wt resin before burning}}$$
 X100

The weight of resin before burning char and after burning was determined by $\rm H_2SO_4/$ peroxide digestion of composites before and after burning. The fiber containment measurement was carried out on a muffle furnace charred composite specimen immediately after it was removed from the 800°C furnace. The specimen was impacted with a 100 gm weight which was dropped from a height of 8 cm. The weight of the debris was determined. The composition of the composite (fiber weight) was also determined on another sample by the $\rm H_2SO_4/peroxide$ method before and after burning. The fiber containment was calculated as follows:

% fiber containment =
$$\frac{\text{Wt fiber after burning}}{\text{Wt fiber before burning}}$$
 X100

3.5.2.4 Mechanical Properties

Interlaminar Shear Strength Test - The short beam shear test was conducted at a span-to-depth ratio of 4:1. The loading nose is $0.635 \, \mathrm{cm}$ diameter and the support pins are $0.48 \, \mathrm{cm}$ diameter. Crosshead speed was $0.127 \, \mathrm{cm/min}$. Nominal specimen dimensions are $0.635 \, \mathrm{cm}$ wide x $1.27 \, \mathrm{cm}$ long x $.254 \, \mathrm{cm}$ thick.

Flexural Test - A three point load bend test at a span-to-depth ratio of 20:1 was conducted on composite specimens. Crosshead speed was .127 cm/min. Specimen dimensions are nominally 0.635 cm wide x 5.59 cm long x .254 cm thick.

4. CONCLUSIONS

- 1. Each BIA containing resin exhibited twice the char yield of the control resin MY 720/DDS (40% char vs 20% char).
- 2. The moisture absorption properties of these bisimide amine cured epoxies (IME's) were considerably less than state-of-the-art epoxies (0.5 wt % versus 2.0% saturation at 87% RH at 315 K (82°C)).
- 3. The strain-to-failure of the MY 720/DDS (control resin, C) resin system was improved 25% by replacement of DDS and 6F-DDS (MY 720/6F-DDS) (1.25% versus 0.99%).
- 4. Two of the composite systems Celion 6000/IME-1 and Celion 6000/IME-5 emerged as having superior properties relative to the other Celion 6000/IME composite systems and also relative to state-of-the-art graphite epoxy systems. This was demonstrated by excellent values for the wet shear and flexural strengths and moduli at 150°C and 177°C. For example, the 150°C and 177°C wet shear strengths of these systems are approximately 7000 psi and 5000 psi respectively. The 150°C and 177°C wet flexural strengths and moduli for these two systems are 1030 MPa, 107 GPa and 859 MPa, 101 GPa respectively.
- 5. Based on the resin properties, processing characteristics and composite properties, bisimide amine cured MY 720 epoxy systems MY 720/6F-DDS (IME-1) and MY 720/6F-DDS/DDS (IME-5) approach the objectives of the program to develop a resin with improved toughness, char yield and moisture resistance over state-of-the-art resins.

5. RECOMMENDATIONS

Additional studies with these novel bisimide amine cured epoxy systems should comprise methods to modify the two best bisimide amine cured MY 720 epoxy resins, MY 720/6F-DDS (IME-1) and MY 720/6F-DDS/DDS (IME-5) to improve the toughness characteristics of these resin systems.

6. REFERENCES

- 1. Serafini, T. T., Delvigs, P. and Vannucci, R. D., "High Char Imide Modified Epoxies", NASA TM 79226, also Vol. 12, Proc. of 12th National SAMPE Conf.
- 2. U.S. Patent 4,244,857, Serafini et al.

Structure	Designation
$H_2N \longrightarrow S \longrightarrow NH_2$	DDS
$H_2N - \bigcirc \longrightarrow \begin{matrix} 0 & CF_3 & C \\ S & C & CF_3 \\ C & CF_3 \\ C & C \\ C & CF_3 \\ C & C \\ C &$	6F-DDS
$H_2 = \left(\begin{array}{c} CF_3 & C \\ C &$	6F-MDA
$H_{2} = \bigoplus_{C} \bigoplus_{C \in \mathcal{F}_{3}} \bigoplus_{C \in \mathcal{F}_{3}} \bigoplus_{C} \bigoplus_{C \in \mathcal{F}_{3}} \bigoplus$	6F_PDA
$H_2 = \bigoplus_{i \in \mathcal{A}} \bigcap_{j \in \mathcal{A}} \bigcap_{i \in \mathcal{A}} \bigcap_{j \in \mathcal{A}} \bigcap_{j \in \mathcal{A}} \bigcap_{i \in \mathcal{A}} \bigcap_{j \in \mathcal{A}} \bigcap_{i \in \mathcal{A}} \bigcap_{j \in \mathcal{A}} \bigcap_{j \in \mathcal{A}} \bigcap_{i \in \mathcal{A}} \bigcap_{j \in A$	6F_ODA
H ₂ N-(-)-(-)-(-)-(-)-(-)-(-)-(-)-(-)-(-)-(-	MDA
H ₂ N-O-NH ₂	ODA
H ₂ N - (set 2	PDA
$\begin{array}{c} CH_2 \xrightarrow{CH_2 CH_2} CH_2 \xrightarrow{CH_2 CH_2} CH_2 \xrightarrow{CH_2 CH_2} CH_2 \\ CH_2 \xrightarrow{CH_2 CH_2} CH_2 \xrightarrow{CH_2} CH_2 \end{array}$	MY 720

Table 2

Chemcial Compositions of Neat Resin Specimens

Resin System No.	Resin System Epovy/hardener(s)	Molecular Weight ¹ Epoxy/hardener(s)	Mole Ratio of Epoxy/hardener(s)	Weight Ratios of Epoxy/hardener(s)
U	MY 720/DDS	500/248.4	0.012/0.012	6.00/3.00
IME-1	MY 720/6F-DDS	500/904.8	0.0064/0.0064	3.20/5.79
IME-2	MY 720/6F-:DA	500/804.7	0.0069/0.0069	3.45/5.52
IME-3	MY 720/6F-ODA	500/808.6	0.0069/0/0069	3.45/5.58
IME-4	MY 720/6F-PDA	500/624.5	0.008/0.008	4.00/4.99
IME-5	MY 720/6F-DDS/DDS	500/904.8/248.4	0.0084/0.0042/0.0042	4.00/3.80/1.04
IME-6	MY 720/6F-MDA/MDA	500/804.7/198.3	0.009/0.0045/0.0045	4.50/3.62/0.89
IME-7	MY 720/6F-ODA/ODA	500/808.7/200.1	0.0088/0.0044/0.0044	4.40/3.56/0.88
IME-8	MY 720/5F-PDA/PDA	500/624.5/108.1	0.0104/0.0052/0.0048	5.20/3.25/0.52

lbased on the chemcial formula of tetraglycidylmethylenedianiline (NY720), the molecular weight of NY720 should be 422. According to the manufacturer (Ciba Geigy), the average molecular weight of this epoxy resin is 500. The latter value is used throughout this investigation.

Table 3
Resin Systems Studied by IR

Resin System No.	Resin Composition
С	1.0 equiv. MY 720 + 1.0 equiv. DDS
IME-1	1.0 equiv. MY 720 + 1.0 equiv. 6F-DDS
IME-2	1.0 equiv. MY 720 + 1.0 equiv. 6F-MDA
IME-3	1.0 equiv. MY 720 + 1.0 equiv. 6F-ODA
IME-4	1.0 equiv. MY 720 + 1.0 equiv. 6F-PDA
IME-5	1.0 equiv. MY 720 + 0.5 equiv. 6F-DDS + 0.5 equiv. DDS
IME-6	1.0 equiv. MY 720 + 0.5 equiv. 6F-MDA + 0.5 equiv. MDA
IME-7	1.0 equiv. MY 720 + 0.5 equiv. 6F-ODA + 0.5 equiv. ODA
IME-8	1.0 equiv. MY 720 + 0.5 equiv. 6F-PDA + 0.5 equiv. PDA

Table 4

Infrared Cure Study of Epoxy Resins by Following Epoxy/Aromatic Absorption Ratio

	IME 8		0.142	0.102	0.023	0.032	0.023	0.019	0.016	0.0074	0.0082	1
	IME-7		0.087	0.095	0.022	0.019	0.016	0.011	0.011	0.003	0.0016	ı
	IME-6	cm-1	0.088	0.062	0.038	0.042	0.022	0.017	0.026	0.027	0.008	i
	IME-5	915 cm ⁻¹ /1512 cm	0.280	960.0	0.028	0.022	0.025	0.022	0.018	0.014	0.019	t
Resin System	IME-4	ľ	0.136	990.0	0.042	0.023	0.019	0.021	0.020	0.018	0.017	0.020
Res	IME-3	ance Rati	orba	0.069	0.041	0.023	0.020	0.016	0.013	0.0116	0.0114	0.102
	IME-2	Absorb		0.08	0.046	0.025	0.025	0.024	0.020	0.0146	0.0135	0.0135
	IME-1		0.184		0.053	0.028	0.029	0.029	0.025	0.027	0.0316	0.0316
	U		0.181	0.209	0.064	0.054	0.051	0.037	0.034	0.021	0.021	0.015
	Conditions		Room temperature vacuum, l hr	1 hr at 122°C	1 hr at 122°C + 1 hr at 177°C	1 hr at 122°C + 2 hrs at 177°C	1 hr at 122°C + 3 hrs at 177°C	1 hr at 122°C + 4 hrs at 177°C	1 hr at 122°C + 5 hrs at 177°C	1 hr at 122°C + 5 hrs at 177°C + 1.5 hrs at 202°C	1 hr at 122°C + 5 hrs at 177°C + 2.5 hrs at 202°C	1 hr @ 122°C + 5 hrs @ 177°C + 24 hrs @ 202°C
Cure	No.		7	2	e	4	Ŋ	9	7	œ	6	10

Table 5

DSC Data of Uncured Epoxy Resins

Resin		Tei	mperature o	of Exotherm, °C		
System	First	Exotherm		Second	Exother	rm
	Starting	Peak	Final	Initial	Peak	Final
	Temp.	Temp.	Temp.	Temp.	Temp.	Temp.
С	138	155	-	155	225	275
IME-1	100	120	150	-	240-270 Doublet	285
IME-2	145	215	245.	250	285	300
IME-3	145	210	250	255	285	310
IME-4	140	230	260	260	275	290
IME-5	100	120	135		220-235 Doublet	250
IME-6	135	195	245	245	280	290
IME-7	135	195	245	245	285	295
IME-8	120	155	200		240-265 Doublet	285

Table 6

Gel Characteristics of Resins

			Approx. Gelation Under Contact Pressure	
Danie	Gel Time	Gel Time, min		
Resin System	at 122°C	at 150°C	Temp. °C/min	
C	liquid-like showed no gela- tion up to 1 hr	41	~150/90	
IME-1	13	8	180/60	
IME-2	9	. 4	138-150/60	
IME-3	7	4	120-123/7	
IME-4	10	5	145-166/20	
IME-5	60	25	150/90	
IME-6	no melting	no melting	145/15	
IME-7	4	2	75-148/12	
IME-8	no melting	no melting	~146/10	

Table 7

Capillary Tube Melt Behavior of Resin Powders

Resin No.	Observations
IME-1	Sinters 105, melts 110°C
IME-2	Darkens, sinters 105°C, melts ~110°C
IME-3	Melts 100-110°C Gas evolution: 145°C
IME-4	Melts 64°C
IME-5	Melts 60°C
IME-6	Melts 58-67°C
IME-7	Melts 60-67°C Gas evolution 170°C
IME-8	Sinters 70° C, melts $88-130^{\circ}$ C Gas evolution: 165° C

Table 8

Initial Cure Cycles Investigated for Fabrication of Epoxy Resin Specimens

Cure	
Cycle	
No.	Process Conditions
1	RT → 122°C (2-3°C/min), at temp., apply 0.69 MPa, hold 2 hrs, 122°C-177°C (2-3°C/min), 0.69 MPa, hold 2 hrs
2	RT \rightarrow 122°C (2-3°C/min), at temp. 0.69 MPa, hold 2 hrs, 122°C \rightarrow 177°C (2-3°C/min), 100 psi, hold 2 hrs at 177°C, 177°C \rightarrow 204°C (2-3°C/min), hold 24 hrs, (atm pressure).
3	RT+150°C (2-3°C/min), at temp., 0.69 MPa, hold 1 hr, 150°C+177°C (2-3°C/min), 0.69 MPa, hold 2 hrs at 177°C.
4	RT \rightarrow 150°C (2-3°C/min), at temp. 0.69 MPa, hold 1 hr, 150°C \rightarrow 177°C (2-3°C/min), 0.69 MPa, hold 2 hrs, 177°C \rightarrow 204°C (2-3°C/min), hold 24 hrs, (atm pressure).
5	RT+150°C (2-3°C/min), at temp. 0.69 MPa, hold 1 hr, 150°C+201°C (2-3°C/min), 0.69 MPa, hold 2 hrs.
6	RT \rightarrow 150°C (2-3°C/min), at temp. 0.69 MPa, hold 1 hr, 150°C \rightarrow 201°C, (2-3°C/min), 0.69 MPa, hold 2 hrs, 201°C \rightarrow 204°C, hold 24 hrs (atm pressure).
7	RT+150°C (2-3°C/min) at temp. 0.69 MPa, hold 1 hr, 150 °C+210°C (2-3°C/min), 0.69 MPa, hold 2 hrs.

 $\label{eq:table 9}$ Processing Parameters for Fabrication of Epoxy Resin Specimens

Specimen No.	Initial Sample Preparation	Cure Cycle ¹
С	Mix MY720 + DDS, heat to 150° C, pour liquid in preheated (150°C) mold	150°C/l hr + 177°C/2 hrs + 204°C/ 2 hrs
IME-1	Removed solvent at 70°C 2 hrs in vacuum to produce resin powder	70°C vacuum, raise T to 150°C, hold ly hr, raise T to 180°C/10 min, release vacuum, hold 180°C/2 hrs, raise T to 204°C, hold 204°C/2 hrs
IME-2	Same process as IME-1	Compression molded. Placed in preheated press at 180°C, consolidated sample at 0.69 MPa and removed pressure, flow occurs at 102°C, raise T to 150°C, gelation occurs immediately, applied pressure (0.69 MPa), raised T to 180°C, hold 180°C/2 hrs, raise T to 204°C, hold 204°C/2 hrs
IME-3	Same process as IME-1	Same as IME-2 except flows at 85-120, gelation occurs at 134°C where pressure (0.69 MPa) was applied
IME-4	Removed solvent at RT in vacuum over 72 hr period to produce resin powder	Same as IME-2 except flows at 40° C, gelation occurs at 160° C where pressure (0.69 MPa) was applied
IME-5	Same process as IME-1	50°C in vacuum, raise T to 150°C, hold ½ hr, release vacuum, hold 150°C 1 hr, raise T to 180°C, hold 180°C/2 hrs, raise T to 204°C, hold 204°C/2 hrs
IME-6	Same process as IME-4	Same as IME-2 except no apparent flow, gelation occurs at 145°C, where pressure (0.69 MPa) was applied
IME-7	Same process as IME-4	Same as IME-2 except flows at 75°C , gelation at 148°C where pressure (0.69 MPa) was applied
IME-8	Same process as IME-4	Same as IME-2, except flows at 35°C,gelation occurs at 145°C, where pressure (0.69 MPa) was applied

 $^{^{1}}$ All samples were postcured at 204°C for 24 hrs

Resin No.	Density ²	Shrinkage ⁴ Due to Cure, %	Coefficient of Thermal Expansion ⁵ cm/cm/°C a x 10 ⁵
С	1.27	0.81	5.15
IME-1	1.36	0.81	5.00
IME-2	1.28	0.90	6.45
IME-3	1.30	0.99	7.02
IME-4	1.33	0.90	6.10
IME-5	1.33 1.34 ³	0.84	5.15
IME-6	1.26	0.70	5.17
IME-7	1.29	0.80	6.45
IME-8	1.29	0.90	6.26

¹ cure cycle: RT \rightarrow gelation + 180°C/2 hrs + 204°C/2 hrs + postcure at 240°C/24 hrs

 $^{^2}_{\mbox{ from volume}}$ and weight measurement

 $^{^{3}\}mathrm{from}$ liquid displacement technique

⁴ after 2 hr cure at 2C4°C

 $^{^{5}}$ determined on a Theta Industries Dilatronic II Dilatometer

	After RT 24 hrs	Saturation at	After 72 hrs
Resin	in Water	180°C, 87% RH	Water Boil
System	Wt %	Wt %	Wt %
С	0.34	3.4	4.03
IME-1	0.41	2.4	3.72
IME-2	0.41	1.6	2.31
IME-3	0.41	1.4	2.43
IME-4	0.36	1.8	3.13
IME-5	0.44	1.8	3.70
IME-6	0.74	1.8	2.47
IME-7	0.90	2.0	2.66
IME-8	0.59	2.5	3.44
Narmco 5208	1.50	5.5	-
DER 332/DDS	1.00	4.1	-
Shell X-801/DDS	3 -	6.5	-

 $^{^{1}}$ all resin samples were postcured at 204°C for 24 hrs

Table 12

Resin¹ Thermal Properties

					TG	A
	Sa	С	TM	A	Wt % Lo	ss at
	Transit	ions, °C	Transitio	ons, °C	(in a	ir)
Resin System	First	Second	First,Tg	Second	<u>300°C</u>	800°C
С	125	255	184	227	1.0	70
IME-1	95	260	196	215	1.5	61
IME-2	100	250	185	215	1.7	60
IME-3	-	250	· 192	220	0	56
IME-4	245	290	207	-	2	55
IME-5	100	255	192	220	2.5	60
IME-6	-	-	193	217	1.4	58
IME-7	-	245	190	212	2.0	66
IME-8	-	-	211	-	3.0	58
Typical Epoxy	~	-	150	250	2.0	15

 $^{^{1}}$ all resins were postcured at 204°C for 24 hrs

Table 13 ${\tt Resin^1\ Char\ Yields}$

	% Ch	ar
	Muffle ²	
Resin	Furnace	TGA^3
System	Method	Method
С	20.7	20.0
IME-1	39.3	39
IME-2	33.8	40
IME-3	39.9	44
IME-4	29.4	45
IME-5	34.2	40
IME-6	35.8	42
IME-7	31.3	34
IME-8	30.8	42
Hercules 3501-6 epoxy	15.7	-

 $^{^{1}}$ all resins were postcured at 204°C for 24 hrs

 $^{^{2}\}text{C\&M}$ high temperature muffle furnace for 3 min at 800°C

³DuPont 951 thermogravimetric analyzer in air at 800°C

Table 14

Resin¹ Tensile Properties

Resin System	Tg, ^O C	Strem psi	ngth <u>MPa</u>	Modula 10 ⁶ psi	us <u>GPa</u>	Strain to Failure %
C MY 720/DDS	250	5966 ²	41.1	0.60	4,13	0.99
IME-1 MY 720/6F-DDS	240	78 7 0	48.7	0.55	3.76	1.24
IME-5 MY 720/6F-DDS/DDS	235	6500 6530	44.8 45.0	0.70 0.61	4.82 4.24	0.99 0.98
Ciba-Geigy 6350 MY720/Dicyandiamide	155	4643 ²	29.9	0.63	4.34	0.80

 $¹_{\mbox{resins}}$ were postcured at 204°C for 24 hrs

 $^{^{2}\}mathrm{an}$ average of five specimens

Table 15
Resin¹ Compression Strengths

	Compression Strength	
	psi	MPa
С	37,400	258
IME~1	29,900	206
-2	23,600	163
-3 .	22,800	157
-4	28,700	198
-5	24,900	17.1
-6	22,200	153
~7	24,300	168
-8	50,400	347
Typical DDS cured epoxy	34,000	234

 $^{^{1}}$ all resins were postcured at 204°C for 24 hrs

Table 16

Autoclave Process Parameters for Celion 6000 Epoxy Resin Composites

15.2 cm x 25.4 cm x 0.23 cm 10 plies

Composite	
No.	Process Conditions
1-C	Evacuation in vacuum bag at RT, then RT→140°C (2.0°C/min), at 140°C apply 0.69 MPa, hold 140°C/1 hr (0.69 MPa), 140°C-+177°C (1.2°C/min), 0.69 MPa, hold 177°C/1 hr (0.69 MPa), 177°C-+204°C (2.0°C/min), (0.69 MPa), hold 204°C/1 hr (0.69 MPa)
2-IME-1	Evacuation in vacuum bag at RT, then RT-122°C (1.6°C/min) at 122°C apply 0.69 MPa, hold 122°C/1 hr (0.69 MPa), 122°C-177°C (1.2°C/min), 0.69 MPa, hold 177°C/1 hr, 177°C-204°C (2.0°C/min), 0.69 MPa, hold 204°C/1 hr (0.69 MPa)
3-IME-2	Evacuation in vacuum bag at RT, then RT->122°C (1.6°C/min), at 122°C apply 1.38 MPa, hold 122°C/1 hr (1.38 MPa), 122°C->177°C (1.2°C/min), 1.38 MPa, hold 177°C/1 hr (1.38 MPa), 177°C+204°C (2.0°C/min), 1.38 MPa, hold 204°C/1 hr (1.38 MPa)
4-IME-3	Same cure cycle as 3-IME-2
5-IME-4	Same cure cycle as 3-IME-2 and 4-IME-3
6-IME-5	Evacuation in vacuum bag at RT, then RT- 177° C (2.5°C/min), at 177°C apply 0.69 MPa, hold 177°C/1 hr (0.69 MPa), 177°C+204°C (2.0°C/min), 0.69 MPa, hold 204°C/1 hr (0.69 MPa)
7-IME-6	Same cure cycle as 3-IME-2, 4-IME-3 and 5-IME-4
8-IME-7	Same cure cycle as 3-IME-2, 4-IME-3, 5-IME-4, and 7-IME-6
9-IME-8	Same cure cycle as 3-IME-2, 4-IME-3, 5-IME-4, 7-IME-6 and 8-IME-7

Table 17

Celion 6000 Resin Composites Compression Molded (15.24 cm x 25.4 cm x 0.25 cm) 9 plies

Composite No.	Processing Parameters
33-C	RT-148°C, contact P (1.7°C/min) then at 148°C application of press.(1.38 MPa) to STOPS $148^{\circ}\text{C} \rightarrow 177^{\circ}\text{C}$ (0.8°C/min), hold, $177^{\circ}\text{C}/2$ hrs (pressure) + 204°C/2 hrs (air circulating oven)
20-IME-1	RT+150°C, contact P vacuum (1.4°C/min) at 150°C application of press.to STOPS, 150 °C+177°C (1.7°C/min), hold 177 °C/2 hrs (press.1.38 MPa) + 204 °C/2 hrs (air circulating oven)
34-IME-1	RT+148°C, contact P (2.3°C/min) at 148°C application of pressure to STOPS, 148°C -177°C (0.5°C/min), hold, 177°C/2 hrs (press-1.38 MPa) + 204°C/2 hrs (air circulating oven)
21-IME-2	RT \rightarrow 120°C (3.4°C/min) at 120°C application of press (1.38 MPa) to STOPS, initially at RT, 120°C \rightarrow 150°C/1 hr (0.5°C/min), hold 1 hr, 150°C \rightarrow 177°C (2.1°C/min), hold 177°C/2 hrs (press 1.38 MPa) + 204°C/2 hrs (air circulating oven)
32-IME-2	RT-136°C, contact P (2.0°C) at 136°C application of press (1.38 MPa) to STOPS, 136°C+177°C (1.1°C/min), hold 177°C/2 hrs (press 1.38 MPa) + 204°C/2 hrs (air circulating oven)
36-IME-2	RT \rightarrow 116°C (25 psi) (2.6°C/min), 116°C \rightarrow 128°C (2.4°C/min), contact P, then at 128°C application of press (1.38 MPa) to STOPS, hold 5 min, 128°C \rightarrow 178°C (1.5°C/min), hold 178°C/2 hrs (press 1.38 MPa) + 204°C/2 hrs (air circulating oven)
22-IME-3	RT+88°C contact P (2.3°C/min), then at 88°C application of press-(1.38 MPa) to STOPS, $88^{\circ}C-177^{\circ}C$ (1°C/min), hold $177^{\circ}C/2$ hrs (press-1.38 MPa), + 204°C/2 hrs (air circulating oven)
28-IME-3	RT+126°C, contact P (2°C/min), at 136°C application of press- (1.38 MPa) to STOPS, $126^{\circ}\text{C} \rightarrow 177^{\circ}\text{C}$ (1.4°C/min), hold $177^{\circ}\text{C}/2$ hrs (press-1.38 MPa) + $204^{\circ}\text{C}/2$ hrs (air circulating oven)

Table 17 (Cont'd)

Composite No.	Processing Parameters
23-IME-4	RT \rightarrow 150°C, contact P (2.3°C/min) at 150°C then application of press.(1.38 MPa) to STOPS, 150°C \rightarrow 177°C (1°C/min), hold 177°C/2 hrs (press, 1.38 MPa) + 204°C/2 hrs (air circulating oven)
29-IME-4	RT \rightarrow 145°C (1.9°C/min) 0.69 MPa initially, release P, 145°C \rightarrow 150°C, (1°C/min) (contact), at 150°C application of press (1.38 MPa) to STOPS, 150°C \rightarrow 177°C (0.5°C/min), hold 177°C/2 hrs (press, 1.38 MPa) + 204°C/2 hrs (air circulating oven)
24-IME-5	RT \rightarrow 155°C, contact P (1.8°C/min), at 155°C application of press-(1.38 MPa) to STOPS, 155°C \rightarrow 177°C (1°C/min), hold 177°C/2 hrs (press, 1.38 MPa) + 204°C/2 hrs (air circulating oven)
30-IME-5	RT \rightarrow 130°C contact (1.8°C/min), at 130°C application of press- (1.38 MPa) to STOPS, 130°C \rightarrow 177°C (1.6°C/min), hold 177°C/2 hrs (press, 1.38 MPa) + 204°C/2 hrs (air circulating oven)
25-IME-6	RT \rightarrow 125°C contact (2.2°C/min), at 125°C application of press. to STOPS, 125°C \rightarrow 178°C (2°C/min), hold 178°C/2 hrs (press. 1.38 MPa) + 204°C/2 hrs (air circulating oven)
31-IME-6	RT \rightarrow 140°C contact P (2.0°C/min) at 140°C application of press. to STOPS, 140°C \rightarrow 178°C (1.5°C/min) (press, 1.38 MPa), hold 178°C/2 hrs, press.1.38 MPa + 204°C/2 hrs (air circulating oven)
26-IME-7	RT \rightarrow 125°C contact P (2°C/min), at 125°C application of press. (1.38 MPa) to STOPS, 125°C \rightarrow 178°C (2.26°C/min), hold 178°C/2 hrs (press, 1.38 MPa) + 204°C/2 hrs (air circulating oven)
35-IME-7	RT \rightarrow 127°C contact P (2.1°C/min), at 127°C application of press. (1.38 MPa) to STOPS, hold 127°C, 5 min, 127°C \rightarrow 178°C (2.2°C/min) hold 178°C/2 hrs (press, 1.38 MPa) + 204°C/2 hrs (air circulating oven)
37-IME-7	RT-123°C contact P (2.2°C/min), at 123°C application of press. (1.38 MPa) to STOPS, hold 10 min, 123°C-178°C (2.0°C/min), hold 178°C/2 hrs (press, 1.38 MPa) + 204°C/2 hrs (air circulating oven)

Table 17 (Cont'd)

No.	Processing Parameters					
27-IME-8	RT+80°C contact P (1.7°C/min, 80°C+115°C (2.5°C/min), at 115°C application of pressure (1.38 MPa) to STOPS, $115^{\circ}C+179^{\circ}C$ (2.8°C/min), hold $177^{\circ}C/2$ hrs (press. 1.38 MPa) + $204^{\circ}C/2$ hrs (air circulating oven)					
38-IME-8	RT+98°C, application of pressure 1.38 MPa (2.5°C/min), 98°C 106°C (2.0°C/min), pressure increased (2.76 MPa), 106°C+121°C (3.0°C/min), 4.85 MPa, 121°C+178°C (1.0°C/min), hold 178°C/2 hrs, pressured increased (4.85 MPa) + 204°C/2 hrs (air circulating oven)					

Table 18 Composition of Autoclave Molded Composites (15.2 cm x 25.4 cm x 10 ply)

	Measured	Theoretics composit		Ex	periment	al ¹	Composite Ply
Composite	Density	Fiber	Fiber		Vol %		Thickness
No.	g/cc	g/cc	g/cc	Resin	Fiber	Void	mm/ply
1-C	1.59	1.564	1.61	25.6	72.4	3.1	0.24
	1.59			26.9	70.7	2.5	0.24
2-IME-1	1.57	1.60	1.64	30,5	65.6	3.9	0.24
	1.57			29.7	66.2	4.0	0.24
3-IME-2	1,53	1,59	1.62	38.4	59.1	2.6	0.268
	1.54			34.9	61.9	3.2	0.264
4-IME-3	1.54	1.59	1.62	34.1	62.1	3.8	0.267
	1.55			32.2	63.9	3.9	0.263
5-IME-4	1.56	1.59	1.63	31.3	64.6	4.2	0.236
	1.55			34.8	61.4	3.9	0.24
6-IME-5	1.56	1.58	1.63	30.1	65.7	4.2	0.225
	1.55			26.8	68.0	5.3	0.216
7-IME-6	1.57	1.56	1.61	25.5	71.1	3.4	0.227
	1.54			28.4	67.3	4.3	0.221
8-IME-7	1.52	1.57	1.62	36.2	59.9	3.9	0.256
	1.50			33.6	60.8	5.6	0.246
9-IME-8	1.54	1.57	1.62	34.7	62.4	2.9	0.244
	1.55			33.3	63.4	3.3	0.235

 $^{^{1}}$ Acid digestion method

Table 19 Composition Data for Compression Molded Composites (15.24 cm x 25.4 cm x 9 ply)

Composite	Density	Calcul Vol	ated ¹ %	Ex	periment: Vol %	al ²	Composite Ply Thickness
No.	g/cc	Resin	Fiber	Resin	Fiber	Void	mm/ply
33-C	1.51 1.54	39.0	61.0	27.2 36.1	66.1 61.4	6.7 2.6	0.276
20-IME-1	1.58 1.59	42.9	57.1	38.2 38.2	60.4 64.9	1.3 1.8	0.289
34-IME-1	1.57 1.56	38.7	63.1	41.6 40.2	56.9 57.4	1.5 2.4	0.274
21-IME-2	1,58 1.57	40.7	59.3	33.4 41.1	65.5 53.4	1.1	0.297
32-IME -2	1.52 1.54	39.2	60.8	40.3 40.0	57.2 58.2	2.6 1.8	0.276
36-IME-2	1.54 1.56	41.6	58.4	37.8 34.8	60.3 63.3	1.9 1.9	0.279
28-IME-3	1.54 1.54	40.5	59.5	42.8 31.5	55.5 63.9	1.8 4.6	0.282
27-IME-4	1.55 1.57	40.2	59.8	39.6 42.8	58.1 56.4	2.4 0.80	0.287
29-IME-4	1.56 1.56	40.5	59.5	42.1 41.5	56.6 57.3	1.3 1.2	0.279
24-IME- 5	1.55 1.56	37.4	62.6	34.9 -	62.1	2.9	0.272
30-IME- 5	1.55 1.55	37.2	62.8	33.8 37.6	62.4 59.7	3.8 2.7	0.269
25-IME-6	1.52 1.50	38.7	61.3	36.9	59.3	3.8	0.282

Table 19 (Cont'd)

Composite	Density	Calculated ¹ Vol %		Exp	perimenta Vol %	Composite Ply Thickness	
No.	g/cc	Resin	Fiber	Resin	Fiber	Void	mm/ply
31-IME-6	1.55 1.54	39.6	60.4	42.8	57.1	0.04	0.276
	1.34			42.3	57.1	0.54	
26-IME-7	1.49	38.4	61.6	38.8	56.4	4.9	0.276
	1.52			30.4	64.0	5.6	
35-IME-7	1.55	41.4	58.6	35.6	61.7	2.7	0.297
	1.54			37.8	59.8	2.4	
37-IME-7	1.55	41.8	58.2	37.7	60.2	2.1	0.274
	1.54			38.9	59.1	1.9	
27-IME-8	1.52	40.5	59.5	39.1	57.8	3.1	0.284
	1.52			40.4	56.9	2.6	
38-IME-8	1.55	40.9	59.1	37.2	60.9	1.9	0.274
	1.58		-	38.0	61.8	0.20	

based on data: Finished composite weight = initial weight of 9 plies (fiber + resin) - weight of resin flash removed. Fiber weight of each composite = 105.246g, density of fiber = 1.76g. Resin density varies with each resin. Calculation assumes zero void content.

 $^{^{2}}_{\text{Acid digestion method}}$

 $\label{eq:table 20} \textbf{Moisture Absorption of Celion } 6000 \ \textbf{Epoxy Resin Composites}$

	After 24 hrs RT Wt %	82°C,	Saturation at 82°C, 87% RH Wt %		
	flex. spec.	shear spec.	flex. spec.	flex. spec.	
1	0.05	0.75	0.45	0.00	
1-C	0.05	0.65	0.45	0.89	
2-IME-1	0.09	0.54	0.51	1.05	
3-IME-2	0.08	0.35	0.36	0.62	
4 IME - 3	0.12	0.42	0.36	1.21	
5-IME-4	0.15	0.61	0.53	0.86	
6-IME-5	0.09	0.63	0.59	0.85	
7-IME-6	0.16	0.62	0.56	0.88	
8-IME-7	0.09	0.69	0.60	0.69	
9-IME-8	0.11	0.76	0.62	1.15	
33-C	0.25	1.09	0.69	1.20	
20-IME-1	0.12	0.66	0.36	0.89	
34-IME-1	0.07	-	-	0.99	
21-IME-2	0.13	~	- ,	0.65	
32-IME-2	0.12	0.50	0.32	0.74	
36-IME-2	0.10	-	- ,	0.70	
28-IME-3	0.21	0.57	0.41	0.71	
23-IME-4	0.17	-	_	1.17	
29-IME-4	0.15	0.67	0.57	0.91	
24-IME-5	0.09	0.65	0.64	1.10	
30-IME-5	0.12	0.72	0.63	1.06	
25-IME-6	0.18	_	_	0.89	
31-IME-6	0.14	0.58	0.42	0.60	
26-IME-7	0.24	0.88	0.39	1.10	
35-IME-7	0.09	-	_	0.82	
37-IME-7	0.10		-	0.76	
11- C	0.13	0.58	0.58	1.16	
13-IME-2	0.09	0.39	0.46	0.69	
14-IME-3	0.15	0.36	0.43	0.87	
15-IME-4	0.14	0.48	0.60	1.05	
17-IME-6	0.14	0.20	0.41	1.15	
17-IME- 0 18-IME- 7	0.07	0.44	0.52	0.60	

 $\label{eq:Table 21} \label{eq:Table 21}$ Thermal Characteristics of Celion 6000 Epoxy Resin Composites 1

	TMA Transitions, °C		TGA Wt % I	
	First, Tg	Second	300°C	800°C
1-C	230	275	0.6	15
33-C	-	275	0.2	17
2-IME-1	-	285	0.7	14
34-IME-1	175	285	0.8	21
3-IME-2	-	180	0.5	17
32-IME-2	175	275	0.7	17
4-IME-3	-	· 210	0.4	15
28-IME-3	195	235	1.0	20
5-IME-4	145	265	0.6	15
23-IME-4	150	235	0.2	18
29-IME-4	~	240	0.5	19
6-IME-5	~	-	0.5	14
24-IME-5	~	225	0.4	19
30-IME-5	~	255	1.0	18
7-IME-6	160	275	0.5	13
31-IME-6	185	225	0.4	17
8-IME-7	205	250	0.5	17
26-IME-7	180	250	1.0	18
35-IME-7	180	250	0.8	27
37-IME-7	180	265	0.7	26
9-IME-7	175	280	0.8	17
27-IME-8	145	245	0.4	21
38-IME-8	150	245	2.0	16

 $^{^{1}}$ composites were postcured at 204°C for 24 hrs

Table 22

Char Forming Properties of Celion 6000/Epoxy Resin Composites

Wt % Retention
Due to Pyrolysis
Wt %

	W L /6)		
Composite System	TGA <u>Method</u> ¹	Muffle Furnace Method ²	Wt % Resin Char Yield in Composite ³	Wt % Fiber Containment ⁴
C	85	84	15	99
-1	86	87	46	101
-2	83	75	41	111
-3	85	83	47	104
-4	84	80	35	100
- 5	86	84	33	95
-6	87	75	41	103
- 7	83	81	44	106
-8	83	78	30	94

 $^{^{1}\}text{DuPont 951}$ thermogravimetric analyzer in air at $800\,^{\circ}\text{C}$

 $^{^2\}text{C\&M}$ high temperature muffle furnaces for 3 min at $800\,^{\circ}\text{C}$

 $[\]frac{3}{\%}$ resin char yield = $\frac{\text{wt char after burning}}{\text{wt resin before burning}}$ X100

Wt % resin before and after burning were determined by $\rm H_2O_4/H_2O_2$ digesting of composites before and after burning

 $[\]frac{4}{\%}$ fiber containment = $\frac{\text{wt fiber after burning}}{\text{wt fiber before burning}}$ X100

Wt % fiber before and after burning were determined by $\rm H_2SO_4/H_2O_2$ digesting of composites before and after burning

Table 23 $\label{eq:23} \mbox{Interlaminar Shear Strengths1 of Celion 6000/Resin Composites2 (Dry Condition)$

RT Interlaminar Shear Strength 1 "as-fabricated"3 3 Hr Postcure @ 24 Hr Postcure @ Composite 477 K (204°C) 477 K (204°C) No.2_psi MΡa _psi MPa_psi__ MPa. 1-C $15,000^4$ 107 15,000 104 15,300 106.0 $10,400^4$ 2-IME-1 71.6 10,800 74.5 8,200 56.5 13,840⁵ 3-IME-2 95.6 12,600 86.9 12,700 87.3 4-IME-3 13,360⁵ 92.0 12,500 12,500 86.2 85.8 5-IME-4 $12,000^4$ 82.6 11,700 80.5 11,600 79.8 $15,000^5$ 6-IME-5 103.2 16,300 112.0 14,100 97.4 9,6104 7-IME-6 66.3 8,230 56.8 9,790 67.5 13,340⁵ 8-IME-7 91.9 89.4 13,000 13,300 91.8 9-IME-8 $11,880^{5}$ 81.8 11,600 12,400 85.5 80.2

 $^{^{1}}$ span-to-depth ratio, S/D = 4/1

 $^{^{2}}$ composites were autoclave molded, for cure cycle see Table 16

 $^{^{3}}$ composites were not postcured

⁴¹ specimen tested

⁵ an average of 5 tests

(Dry Condition)

	Interlaminar Shear Strength					
	RT		423 K (150°C) ⁴		450 K (177°C)4
	psi	<u>MPa</u>	psi	MPa	psi	MPa
1-C	13,600	93.8	10,100	69.6	9,290	64.1
	13,300	92.0	9,690	66.8	7,940	54.7
2-IME-1	8,480	58.4	5,950	41.0	5,570	38.4
	8,980	61.4	5,750	39.6	5,740	39.6
3-IME-2	11,400	78.4	6,860	47.3	5,020	34.6
	11,600	79.6	6,970	48.0	5,170	35.6
4-IME-3	11,500	79.0	6,400	44.2	5,030	34.6
	11,300	77.7	7,030	48.5	4,800	33.1
5-IME-4	10,000	69.3	6,590	45.5	5,360	36.9
	10,400	71.6	6,400	44.1	5,320	36.7
6-IME-5	12,900	89.2	6,960	48.0	8,200	56.6
	12,700	87.4	7,360	50.7	8,222	56.7
7-IME-6	8,240	56.8	5,060	34.9	4,740	32.6
	8,090	55.8	5,370	37.1	3,990	27.5
8-IME <i>-</i> 7	11,600	80.2	7,850	54.1	6,710	46.3
	11,700	80.9	7,210	49.7	6,600	45.5
9-IME -8	10,500	72.7	6,270	43.2	4,840	33.4
•	9,820	67.7	6,370	43.9	5,820	40.1

 $^{^{1}}$ span-to-depth ratio 4/1

 $^{^{2}}$ composites were autoclave cured, for cure cycle see Table $_{16}$

 $^{^3}$ all composites postcured @ 477 K (204°C) for 24 hrs

 $^{^{4}}$ after 20 min soak at temperature

Table 25

Interlaminar Shear Strength of Humidity Exposed Celion 6000/Epoxy Resin Composites 3,4

		Int	erlaminar S	Shear Stren	ngth		
	RT		423 K (150°C)5	450 K (177°C) ⁵		
	psi	<u>MPa</u>	psi	<u>MPa</u>	psi	MPa	
1-с	11,000	75.9	6,125	42.2	5,310	36.6	
	11,900	81.9	6,090	42.0	4,680	32.3	
2-IME-1	7,220	49.8	5,300	36.6	5,210	35.9	
	7,490	51.6	5,220	36.0	5,060	34.9	
3-IME-2	10,500	72.2	4,700	32.4	3,500	24.2	
	10,500	72.4	4,460	30.7	3,070	21.2	
4-IME-3	10,300	70.8	4,660	32.1	3,140	21.7	
	10,100	69.8	4,770	32.9	3,380	23.3	
5-IME-4	10,300	70.7	4,390	30.3	3,040	21.0	
	10,200	70.2	4,750	32.8	3,120	21.5	
6-IME-5	12,100	83.4	5,800	40.0	4,080	28.1	
	10,100	69.3	5,350	36.9	4,410	30.4	
7-IME-6	7,410	51.1	3,990	27.5	3,870	26.7	
	7,740	53.4	4,720	32.6	3,470	23.9	
8-IME-7	9,260	63.8	5,260	36.3	3,520	24.3	
	9,570	66.0	5,130	35.3	3,900	26.9	
9-IME-8	9,420	65.0	3,930	27.1	2,620	18.1	
	9,580	66.1	3,530	24.4	2,830	19.5	

 $^{^{1}}$ span-to-depth 4/1

 $^{^2}$ 87% RH at 355 K (82°C) to saturation

 $^{^{3}}$ all composites autoclave cured, for cure cycle see Table 16

 $^{^4}$ composites were postcured at 477 K (204°C) for 24 hrs

 $^{^{5}}$ after 20 min soak at temperature

Table 26 Interlaminar Shear Strengths 1 of Celion 6000/ IME Epoxy Resin Composites²,3 (Dry Condition)

			Interl	aminar	Shear S	trength		
					-		3 hr po	stcure @
			"as-fabr	icated"			<u>477 K</u>	(204°C)
Composite No.	Psi Psi	MPa	450 K (177°C) ⁴ MPa	477 K psi	(204°C) MPa	4 423 K psi	(150°C) ⁴ MPa
11-IME-1	16,200 15,600	111 108	8,540 7,660	58.9 52.8	4,650	32.1	9,440	67.1
13-IME-2	12,900 12,700	88.9 87.7	4,260 4,510	29.4 31.1	2,220	15.2	6,080	42.0
14-IME-3	11,900	82.1	4,210	29.0	-	_	6,560	45.2
15-IME-4	12,800	88.3	5,360	36.9	-	-	7,370	50.8
17-IME-6	9,890	68.2	3,420	23.6	-	-	5,330	36.7
18-IME-7	11,900	82.1	3,930	27.1	-	_	5,220	36.0

 $^{^{1}}$ Short beam shear strength, S/D = 4/1

 $^{^2\}mathrm{Composites}$ (10cm x 10cm x ~.254cm) were compression molded, similar to the process described in Table 17 for larger composites $^3\mathrm{Composites}$ were not postcured

⁴ after 20 min soak at temperature

			THEET.	laminar S	mear sc	rengen	2 hr n	ostcure @
0			as fabr	icated3			-	(204°C)
Composite				(177°C)4	/177 V	(204°C)4	423 K	(150°C) ⁴
No.	RT RT	MPa	psi	MPa	psi	MPa_	psi	MPa_
		3-11-1			4			
33-C	17,300	119	10,400	71.7	5080	35.0	9100	62.8
	15,400	106	6,700	46.2	5680	39.2		
	16,100	111	7,210	49.7	4820	33.2		
20-IME-1	16,900	117	7,420	51.1	4650	32.0	9330	64.1
	15,000	104	7,720	53.2	6270	43.2		
	14,200	97.9						
34-IME-1	14,000	96.4	-	· -	-	-	7630	52.6
32-IME-2	13,500	93.1	2,330	16.1	1570	10.8	4670	32.2
	12,000	82.7	2,500	17.8	1770	12.2		
	11,700	80.6						
28-IME-3	12,000	82.6	2,810	19.4	1520	10.5	4870	33.5
	11,900	82.1	2,940	20.3	1690	11.7		
23-IME-4	-	-	-	-	-	-	8080	55.7
29-IME-4	11,500	79.3	6,380	44.0	3830	26.4	7430	51.2
	12,000	86.5	5,810	40.0	4050	27.9		
	11,900	82.1	5,740	39.6	3340	23.0	-	-
24-IME-5	17,200	119	10,600	72.7	52 9 0	36.4	9050	62.4
	15,300	106	6,330	43.6	4700	32.4		
	15,100	104						
	15,400	106	5,920	40.8	4050	27.9	-	~
30-IME-5	-	-	-	-	-	-	5670	39.1
25-IME-6	12,000	82.9	3,610	24.9	2050	14.1	5060	34.9
	10,800	74.3	3,730	25.7	2270	15.7		
31-IME-6	11,100	76.6	-	~	-	-	5670	39.1
26-IME-7	12,900	88.6	4,440	30.6	2900	20.0	5890	40.6
	12,700	87.6	4,950	34.1	3160	21.8		
27-IME-8	12,900	89.2	8,140	52.4	2180	15.0	4940	34.1
	11,500	79.3	3,390	23.3	2210	15.2		
	12,200	84.0						

 $¹_{\text{span-to-depth ratio}}$, S/D = 4/1

²compression molded composites, for cure cycle see Table 17

³composites were not postcured

⁴after 20 min soak at temperature

Table 28

Interlaminar Shear Strength¹ of Celion 6000/
Epoxy Resin Composites²,³

(After 72 hr Boiling Water Exposure)

0		It	nterlaminar Si	hear Streng	th	
Composite No.	RT		450 K (177°C) ⁴	477 K	(Z04°C)4
	ksi	MPa	ksi	MPa	ksi	MPa
33-C	10,500	72.5	3540	24.4	2480	17.1
	11,700	80.5	3780	26.0	1730	11.9
20-IME-1	10,300	70.8	3980	27.4	4020	24.7
	12,500	86.4	4740	92.7	3580	16.9
32-IME-2	9,900	68.2	2070	14.4	1400	9660
	11,300	78.1	2111	14.6	1310	9020
28-IME-3	8,940	61.6	2410	16.6	1800	12.4
	9,690	66.8	2340	16.1	2630	18.1
29~1ME-4	9,920	68.4	4120	28.4	1790	12.3
	10,300	71.2	2260	15.6	1610	11.0
24-IME-5	10,400	71.7	6910	47.6	2450	16.9
2	9,980	68.8	2850	19.7	3070	21.2
25-IME-6	8,260	56.9	2930	20.6	2100	14.5
	8,760	60.4	2880	19.9	1950	13.4
26-IME-7	8,940	61.7	2920	20.1	2740	18.9
	8,340	57.5	2790	19.2	2060	14.2
27-IME-8	8,830	60.9	2470	17.0	1730	11.9
	7,400	51.0	2550	17.6	1900	13.2

 $^{^{1}}$ span-to-depth ratio, 4/1

 $^{^{2}}$ composites were compression molded, for cure cycle see Table 17

 $^{^{3}}_{\text{composites were not postcured}}$

 $^{^{4}}$ after 20 min soak at temperature

Table 29

Interlaminar Shear Strengths of Celion 6000/IME Epoxy Resin Composites 2,3
(Dry Condition)

Comments		Inter	laminar She	ar Streng	th	
Composite No.	R	Т	_423 K (150°C)4	450 K (177°C)4
	ksi	MPa	ksi	MPa	ksi	MPa
33-C	13,700	94.5	9,720 10,000	67.0 69.1	8530 8290	58.8 57.2
20-IME-1	14,800	102	10,600 10,500	72.9 72.6	9250 9560	63.8 65.9
34-IME-1	13,300	92.0	8,830	60.9	7888	54.3
32-IME-2	12,300	84.7	5,680 5,750	39.2 39.6	4640 4410	32.0 30.4
36-IME-2	10,900	75.0	5,970	41.1	4670	32.2
28-IME-3	12,200	84.4	6,840 6,760	47.1 46.6	6120 5460	42.2 37.6
29-IME-4	10,500	72.0	8,810 7,830	60.7 54.0	7720 7860	53.2 54.2
24-IME- 5	16,200 16,100	112 111	10,300 10,600	70.8 71.4	7790 7480	53.7 51.6
30-IME-5	16,600	114	10,600 10,800	74.4 74.5	8060 7690	55.6 53.0
31-IME-6	12,200	84.4	6,760 6,830	46.6 47.1	5230 5300	36.0 36.0
26-IME-7	11,200	76.9 -	6,800 -	46.9 -	6190 5710	42.6 39.4
35-IME-7	10,900	75.3	7,030	48.5	5700	39.3
37-IME-7	11,200	77.2	6,520	45.0	5300	36.6
27-IME-8	13,300 12,600	92.0 87.2	5,860 6,740	40.4 46.4	5570 4900	38.4 33.8
38-IME-8	4,210 4,020	29.0 27.7	- -	<u>-</u>	- -	-

 $[\]frac{1}{2}$ span-to-depth ratio 4/1

³ composites were compression molded for cure cycle, see Table 17 all composites postcured at 477 K (204°C) for 24 hrs

⁴ after 20 min soak at temperature

Table 30 $\label{eq:table 30}$ Interlaminar Shear Strength 1 of Humidity Exposed 2 Celion 6000/IME-Epoxy Resin Composites $^3, ^4$

Composite		Inte	erlaminar Shear	Strength		
No.	RT		423 K (13		450 K	(177°C)5
	ksi	MPa	ksi l	1Pa	ksi	MPa
33-C	8,360	57.6	5270	36.3	4130	28.5
	11,100	76.4	5320	36.7	4050	27.9
20-IME-1	10,200	70.5	6930	47.8	4900	33.8
	10,700	73.6	4900	33.8	5100	35.8
32-IME-2	9,500	65.5	3930	27.1	2460	16.9
	9,760	67.3	4500	31.0	2570	17.7
28-IME-3	10,100	69.4	4090	28.2	3430	23.6
	10,200	70.4	4160	28.7	3202	22.1
29-IME-4	9,640	66.4	4850	33.5	3860	26.6
	9,380	64.6	4670	32.2	3960	27.3
24-IME-5	13,600	93.9	7320	50.5	4520	31.2
., 2	13,600	93.9	7220	49.8	4460	30.7
30-IME-5	13,500	93.0	7120	49.1	4930	34.0
33 23 2	ŕ		7300	50.3	5060	34.9
31-IME-6	9,600	66.2	4270	29.5	3210	22.2
	9,530	65.7	4520	31.2	3150	21.7
26-IME -7	9,940	68.5	4820	33.2	3940	27.2
	9,280	64.0	4990	34.4	3660	25.2
27-IME-8	11,400	78.8	5090	35.1	3130	21.6
~, <u> </u>	11,400	78.8	5220	36.0	3140	21.6

 $^{^{1}}$ span-to-depth ratio, 4/1

 $^{^2}$ 87% RH at 355 K (82°C) to saturation

 $^{^{3}}_{\text{composites were compression molded, for cure cycle see Table 17}$

 $^{^{4}}$ composites were postcured at 477 K (204°C) for 24 hrs

 $^{^{5}}$ after 20 min soak at temperature

Table 31

RT Flexural Properties 1 of Celion 6000/Epoxy Resin Composites 2 , 3 (Dry Condition)

(၁,	18	10	136	129	110	111	112	121	109	117		115
Postcured 24 hrs @ 477 K (204°C)	Modulus	100 01	19.7	18.8	16.0	16.1	16.3	17.5	15.8	16.9		16.7
Post	Strength	111	1787	1344	1184	1274	1359	1513	1400	1508		1376
24 1	Stre	164	259	195	172	185	197	219	203	219		200
ĵ	Sn Spa	5	125	122	125	112	118	120	134	110		119
Postcured 3 hrs @ 477 K (204°C)	Modulus 106psi	100 01	18.1	17.6	18.2	16.2	17.1	17.3	19.4	16.0		17.2
Postcured s@477 K(ngth	110	1603	1453	1265	1640	1385	1696	1606	1225 814		1365
3 hr	Strength	TCV	232	211	183	238	201	246	233	178 118 ⁶		198
	is CP ₂	5	116	133	116	120	121	113	131	113	ł	125
s-Fabricated ⁴	Modulus 106ns1	160 01	16.8	19.3	16.8	17.4	17.5	16.4	19.0	16.4	ı	18.1
As-Fabr	ng th	8	1622	1528	1292	1425	1467	1502	1581	1323 364		1399
	Strength		235	222	187 ⁵ 13	2075	213	218	229	192 ⁵ 52.9 ⁶	45.37	2035
	Composite	·ON	1-C	2-IME-1	3-IME-2	4-IME-3	5-IME-4	6-IME-5	7-IME-6	8-IME-7		9-IME-8

Three point flex test at a span-to-depth ratio, 20/1
2Composites were autoclave molded, for cure cycle see Table 16
4Single specimen tested unless otherwise noted
5Composites were not postcured
5Average of 5 specimens
6450 K (177°C) value
7477 K (204°C) value

Table 32

Flexural Properties 1 of Postcured Celion 6000/Epoxy Resin Composites 2 , 3 (Dry Condition)

I Three point flex test at a span-to-depth ratio of 20/1

 $^2{\rm Composites}$ were autoclave molded, for cure cycle see Table 16 $^3{\rm Composites}$ were postcured at 477 K (204°C) for 24 hrs

4Samples failed in compression

After 20 min soak at temperature

Table 33

Flexural Properties 1 of Humidity Exposed Postcured Celion 6000/Epoxy Resin Composites 3 , 4

		RT	Ĺ			423 K ((150°C) ⁶			450 F	9(3,221)	9
Composite No.	Str	Strength ⁵	Modulus 106psi G	GPa	Strength ksi MPa	in .	Modulus 106psi G	lus GPa	Stre	Strength ⁵ ksi MPa 1	Modulus 106psi G	GPa
1-C	206	1420 1480	19.7 19.4	136 134	181 180	1252 1243	19.4	133 132	129 ⁷ 129	888 891	17.9	124 124
2-IME-1	189 117	1302 807	18.1 10.3	125 71.1	94 119	647 825	17.1 18.5	118 128	88	604 651	14.2 14.8	98.1 102
3-IME-2	146 170	1007	16.6	115 122	103 107	710	15.3 14.1	105 97.4	53 55	366 381	7.61	52.5
4-IME-3	170 156	1174	17.1	118	96	662	13.4	.92.5	59	408	7.34	50.7
5-IME-4	196 186	1354 1284	18.2 17.9	126 124	66.6	459	14.1	97.4 104	61.0	421 303	11.7	80.8
6-IME-5	227 240	1567 1657	17.1 20.2	118 140	100	690 704	16.4	113	75.6 108	522 746	11.6	80.1 120
7-IME-6	186	1279	18.4 18.6	127 128	89.8	619 653	18.3 18.2	126 125	62.4	430	20.2 17.8	139 123
8-IME-7	190 195	1312 1347	16.5 16.3	114	82.3	567 574	13.8	95.4 101	57.2 62.1	395 428	14.9 13.9	103 95.9
9-IME-8	197 202	1357 1392	18.0 18.5	124 128	77.7	536 523	14.8	102 102	49.8	343 339	11.3	78.0 62.0
Three point flexure at a span-to-depth ratizents RH @ 355 K (82°C) to saturation composites were autoclave molded, for cure composites were postcured at 477 K (204°C)	flexura K (82) vere augrere pos	e at a s °C) to s toclave stcured	span-to-depth saturation molded, for c at 477 K (204	depth ratio on for cure cy R (204°C) fo	to 20/1 cycle for 24	see Table hrs	16	5 6 6 7 7 7 6 7 6 7 6 8 1 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	samples fa 20 min se d in shear	ile ak	d in compression at temperature	ssion re

Table 34

Flexural Properties of Celion 6000/IME Epoxy Resin Composites^{1,2} (Dry Condition)

Postcured 3 hrs at

						"as fal	"as fabricated"					{	417 K	(504°C
			RT			450 K	450 K (177°C)7			477 K	477, K (204°C)7		423 K (150°C)	(150°C
Composite	Streng	gth3	Modu	lus	Strength ^{3,4}		Modulus	lus	Streng	th 3,4	Modulus	S	Stren	2th),0
No.	ksi	ksi MPa	10 ⁶ psi G	GPa	ksi MPa		10 ⁶ psi	GPa	ksi MPa	MPa	10 ⁶ psi	GPa	ksi	MPa
11-IME-2	210	210 1447	15.0	103	125	860	13.9	96.2	73.9 510)))	12.1	83.7	129	891
13-IME-3	219	219 1513	16.0	110	77.9 537	537	12.8	88.4	33.9 234	234	5.70	39.3	85.0 585	585
14-IME-4	173	1196	15.2	105	37.1	256	6.54	45.1	31.9 220	220	2.63	18.1	87.6 604	604
15-IME-5	229	1581	15.5	107	88.8 612	612	14.6	101	51.8 357	357	65.6	66.1	103	707
17-IME-7	200	1382	15.6	108	46.5 321	321	8.14	56.1	99.4 685	685	9.72	0.79	79.3 547	547
18-IME-8	233	1605	17.5	121	58.9 406	907	12.7	87.9	118	816	10.9	75.1	72.1	497

for larger composites Composites (10 cm x 10 cm x ~ 0.254 cm) were compression molded, similar to the process described in Table 17 Composites were not postcured

 $^{3}_{4}$ Three point flex test at a span-to-depth ratio of 20/1, except where noted

samples failed in compression

Four point flexure test at a span-to-depth ratio of 20/1 samples failed in tension

after 20 min soak at temperature

Table 35

Flexural Properties 1 of "As Fabricated", Celion 6000/Epoxy Resin Composites 2 , 3 (Dry Condition)

MPa 10 psi G
19.5
1581 19.8 137
12.3
1267 16.5 114
19.0 131
1290 17.9 123
180 16.8 116
1701 16.8 116
17.5
1861 17.2 119
18.0
990 15.6 10
1427 16.3 113
16.4
3 16.8 1
1109 15.1 104

Three point flex test at a span-to-depth ratio of 20/1, except where noted 2 Composites were compression molded, for cure cycle see Table 17 Composites were not postcured Composites were not postcured Four point flexure test at a span-to-depth ratio of 20/1 after 20 min soak at temperature

Table 36

Flexural Properties¹ of Boiling Water Exposed "As Fabricated" Celion 6000/Epoxy Resin Composite², ³ (Flexural Properties after 72 hrs Boiling Water Exposure)

	lus	GPa	40.7	62.3	24.8	26.2	35.0	41.0	32.3	42.9	35.0
477 K (204°C) ⁵	Modulus	10 ⁶ psi	5.91	9.04	3.59	3.80	5.08	5.94	4.68	6.22	5.07
477 K	18th ⁴	MPa	199	417	207	185	203	238	211	191	176
	Strength ⁴	ksi	28.8	60.5	30.0	26.9	29.4	34.5	30.6	27.7	25.5
	ns.	GPa	63.3	72.5	29.6	33.1	59.7	9.09	55.6	58.1	38.6
450 K (177°C) ⁵	Modulus	10 ⁶ psi	9.2	10.5	4.3	. 8 . 4	8.66	8.8	8	8.4	5.6
450 K	igth ⁴	MPa	513	969	254	252	677	335	395	420	564
	Strength ⁴	ksi	74.5	86.5	36.8	36.6	65.1	48.6	57.3	61.0	38.4
	lus	GPa	112	103	102	99.5	97.3	7.66	95.2	103	98.0
	Modulus	10 ⁶ psi	16.3	14.9	14.8	14.4	14.1	14.5	13.8	15.0	14.2
RT	Strength ⁴	MPa	1409	1647	1156	1314	1534	1657	918	1394	1169
	Stre	ksi	204	239	168	191	222	240	133	202	170
	Composite	No.	33-c	20-IME-1	32-IME-2	28-IME-3	29-IME-4	24-IME-5	25-IME-6	26-IME-7	27-IME-8

Three point flexure test at a span-to-depth ratio of 20/1

2
Composites were compression molded, for cure cycle see Table 17

Composites were not postcured
5 Samples failed in compression
after 20 min soak at temperature

Table 37 Flexural Properties 1 of Celion 6000/Epoxy Resin Composites 2 (Dry Condition)

	Postcu	red 3 hrs at 47	77 K (204°C))
		423 K (150°		
Composite	Strengt		Modulu	s
No.	ksi	MPa	10 ⁶ psi	GPa
33-C	1453	1005	8.9	61.3
20-IME-1	1343	926	_	_
	_			
34-IME-1	105^{3}	724	15.7	108
32-IME-2	94.53	307	1.12	7.72
00 TMB 0	73.14		1/ 0	00.0
28-IME-3	/3.14	504	14.2	98.2
23-IME-4	1213	836	16.1	111
25-1HE-4	121-	050	10.1	111
29-IME-4	1114	768	14.6	102
24-IME-5	131 ³	903	16.1	111
30-IME-5	131 ⁴	903	18.6	126
25-IME-6	85.5 ⁴	589	14.7	101
31-IME-6	74.1^{3}	510	14.9	103
06 707 7	77.0/	521	12.2	01 1
26-IME-7	77.04	531	13.2	91.1

 $^{^1}_2$ Three point flex tests at a span-to-depth ratio of 20/1 Composites were compression molded, for cure cycle see Table 17 3_4 Samples failed in tension

⁴ Samples failed in tension
5 Samples failed in compression
6 After 20 min soak at temperature

Table 38

The second of th

Flexural Properties 1 of Celion 6000/Epoxy Resin Composites 2 , 3 (Dry Condition)

1594 1093 14,9 103 1274 872 14,4 140 15,4 106 120 829 16,6 169 1634 103 14,9 103 1274 872 14,4 140 968 16,1 111 129 889 15,0 15,2 14,4 14,2 16,4 113 1624 1117 15,8 13,4 25,2 314 14,1 96,9 40,9 282 8,76 15,2 13,4 14,3 14,8 102 4,5,9 317 10,5 11,6 104 11,3 14,9 103 98,1 676 14,4 113 781 13,6 93,4 86,8 599 14,4 113 781 13,6 93,4 86,8 599 14,4 113 113 12,5 12,3 14,8 100 98,24 677 13,4 11,7 11,	St	Strength	Modulus	ا ا	Stre	Strength	423 K (150°C) ⁶ 1gth Modulus	IS	Str	Strength	450 K (177°C) ⁶ ngth Modulus	Sn Co
160 1106 15.4 106 120 829 16.6 1594 1093 14.9 103 1274 872 14.4 160 968 16.1 111 129 889 15.0 1634 1123 16.4 113 1624 1117 15.8 74.5 514 14.1 96.9 40.9 282 8.76 75.2 518 14.8 99.2 45.9 317 10.5 1344 925 15.7 108 1024 701 14.3 60.6 418 14.6 100 54.0 372 11.6 1034 98.4 99.1 642 13.3 113 781 14.5 99.4 99.14 642 13.3 113 114.6 10.3 98.4 99.1 64.4 13.4 113 116.1 11.3 116.3 14.4 117 11.4 113 116.1 11.3 16.3 14.4 11.4 11.4 110)	psı	a	KS1	ara	10 ps1	a a	KSI	E	10 ps1	r.Pa
1594 1093 16.9 103 127^4 872 14.4 140 968 16.1 111 129 889 15.0 1634 1123 16.4 113 1624 1117 15.8 74.5 514 14.1 96.9 40.9 282 8.76 75.2 518 14.8 14.8 99.2 45.9 317 10.5 134^4 925 15.7 108 102^4 701 14.3 60.6 418 14.6 100 98.4 93.1^4 642 13.3 113 781 14.9 103 98.4 93.1^4 642 13.3 113 781 14.9 103 98.4 98.1 676 14.4 113 781 13.6 93.4 86.8 599 14.4 191 1319 16.3 148 102 54.2 374 11.7 1104 756 14.8 102 54.2 374 11.7 1104 756 14.8 100 98.3 69.8 48.2 677 15.4 87.6 604 12.8 88.3 69.8 482 13.2 1134 918 15.9 110 103 96.1 91.0 91.6 91.0 91.6 91.0 91.6 91.0 91.6 91.0 91.6 91.0 91.6 91.0 91.6 91.0 91.6 91.0 91.6 91.0 91.6 91.0 91.6 91.0 91.6 91.0 91	1708 15.9	6		110	160	1106	15.4	106	120	829	16.6	114
163^4 1123 16.4 113 162^4 1117 15.8 74.5 514 14.1 96.9 40.9 282 8.76 75.2 518 14.8 99.2 45.9 317 10.5 134^4 925 15.7 108 102^4 701 14.3 60.6 418 14.6 100 54.0 372 11.6 104^4 714 14.3 98.4 93.14 642 13.3 113 781 14.3 98.4 93.14 642 13.3 113 781 14.3 98.4 93.14 642 13.3 113 781 14.3 98.4 93.14 642 13.3 113 781 14.3 98.4 93.14 642 13.3 113 781 118 110 110 110 110 110 110 110 110 110 110 110 110	248 ⁴ 1710 16.9	6.		116	159 ⁴ 140	1093 968	14.9 16.1	103	127 ⁴ 129	872 889	14.4 15.0	99.2 103
74.5 514 14.1 96.9 40.9 282 8.76 75.2 518 14.8 99.2 45.9 317 10.5 134^4 925 15.7 108 102^4 701 14.3 60.6 418 14.6 100 54.0 372 11.6 113 781 14.3 98.4 98.1 676 14.4 113 781 14.3 98.4 98.1 676 14.4 113 781 14.3 98.4 98.1 676 14.4 113 18.1 13.6 91.4 86.8 89.9 14.4 1104 756 14.6 100 98.2 67.7 11.7 1104 756 14.6 100 98.2 67.7 14.5 1104 756 14.6 97.9 1004 69.2 14.5 11104 82.1 11.2 97.9 100.4 69.2	221 ⁴ 1520 16.2 222 1528 16.4	. 4		112 113	1634	1123	16.4	113	1624	1117	15.8	109
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1349 15.1	.1		104	74.5	514 518	14.1 14.8	96.9 99.2	40.9	282 317	8.76 10.5	60.4 72.6
60.6 418 14.6 100 54.0 372 11.6 104^4 714 14.3 98.4 93.1^4 642 13.3 113 781 14.9 103 98.1 676 14.4 113 781 13.6 93.4 86.8 599 14.4 183 1260 17.1 118 16.3 148 170 17.1 191 1319 16.3 148 170 1171 18.4 176 1273 21.5 123 161 1107 16.7 110^4 756 14.6 100 98.2^4 677 11.7 87.6 604 12.8 88.3 69.8 482 13.2 113^4 918 15.9 110 102^4 69.8 482 13.2 115^4 795 14.2 97.9 100^4 692 13.9 110 823 14.1 97.0 91.6 692 14.3 100 692 14.1 97.0 91.6 692 14.3 100 692 14.2 97.7 96.8^4 668 14.3 100 692 14.2 97.7 97.7 97.8 689 14.1 100 99.0 <	198 ⁴ 1362 17.4	4.		120	1344	925	15.7	108	1024	701	14.3	98.4
113 781 14.9 103 98.1 676 14.4 113 781 13.6 93.4 86.8 599 14.4 183 1260 17.1 118 191 1319 16.3 14.8 170 1171 18.4 176 1213 21.5 123 161 1107 16.7 103 708 14.8 102 54.2 374 11.7 1104 756 14.6 100 98.24 677 15.4 87.6 604 12.8 88.3 69.8 482 13.2 1154 918 15.9 110 1024 703 14.5 115 823 14.2 97.9 91.6 692 13.9 97.4 692 14.8 102 96.84 668 14.3 100 692 14.8 102 96.84 668 14.3 100 692 14.2 97.0 96.84 668 14.3 100 692 14.2 97.7 1025 702 14.5	1545 15.4	4.		106	60.6 104 ⁴	418 714	14.6 14.3	100 98.4	54.0 93.1 ⁴		11.6 13.3	79.8 91.5
183 1260 17.1 118 191 1319 16.3 148 170 1171 18.4 176 1213 21.5 123 161 1107 16.7 103 708 14.8 102 54.2 374 11.7 1104 756 14.6 100 98.24 677 15.4 87.6 604 12.8 88.3 69.8 482 13.2 1334 918 15.9 110 1024 703 14.5 115 795 14.2 97.9 1004 692 13.9 119 823 14.1 97.0 91.6 632 13.2 97.45 672 14.8 102 96.8 668 14.3 1005 692 14.2 97.7 1025 702 14.5	1504 14.1			97.3	113	781 781	14.9 13.6	103 93.4	98.1 86.8	676 599	14.4	99.2 99.6
191 1319 16.3 148 170 1171 18.4 176 1213 21.5 123 161 1107 16.7 103 708 14.8 102 54.2 374 11.7 1104 756 14.6 100 98.24 677 15.4 87.6 604 12.8 88.3 69.8 482 13.2 1334 918 15.9 110 1024 703 14.5 115 795 14.2 97.9 1004 692 13.9 119 823 14.1 97.0 91.6 632 13.1 97.45 672 14.8 102 96.8 668 14.3 1005 692 14.2 97.7 1025 702 14.5	1699 17.9	6.		123	183	1260	17.1	118				
103 708 14.8 102 54.2 374 11.7 1104 756 14.6 100 98.24 677 15.4 87.6 604 12.8 88.3 69.8 482 13.2 1334 918 15.9 110 1024 703 14.5 1154 795 14.2 97.9 1004 692 13.9 119 823 14.1 97.0 91.6 693 14.1 170 899 14.1 97.0 91.6 688 688 14.3 100^5 692 14.2 97.7 102^5 702 14.5	1452 20.1 1928 16.3	 		139 113	191 176	1319 1213	16.3 21.5	148 123	170 161	1171	18.4 16.7	127
87.660412.888.369.848213.2 133^4 91815.9110 102^4 70314.5 115^4 79514.297.9 100^4 69213.9 119 82313.996.191.863313.1 130 89914.197.091.663213.2 97.4^5 67214.810296.8 4 66814.3 100^5 69214.297.7102 5 70214.5	1508 14.6 1547 17.2	.2		101 119	103 110 ⁴	708 756	14.8 14.6	102 100	54.2 98.2 ⁴		11.7	80.7 106
1134 918 15.9 110 102^4 703 14.5 1154 795 14.2 97.9 100^4 692 13.9 119 823 13.9 96.1 91.8 633 13.1 130 899 14.1 97.0 91.6 632 13.2 97.4 ⁵ 672 14.8 102 96.8 ⁴ 668 14.3 100 ⁵ 692 14.2 97.7 102^5 702 14.5	1539 16.9	6.		117	87.6	909	12.8	88.3	8.69	482	13.2	90.7
115 ⁴ 795 14.2 97.9 100 ⁴ 692 13.9 119 823 13.9 96.1 91.8 633 13.1 130 899 14.1 97.0 91.6 632 13.2 97.4 ⁵ 672 14.8 102 96.8 ⁴ 668 14.3 100 ⁵ 692 14.2 97.7 102^5 702 14.5	2084 1435 17.7	.7		1224	1334	918	15.9	110	1024	703	14.5	100
11982313.996.191.863313.113089914.197.091.663213.297.4 5 67214.810296.8 4 66814.3100 5 69214.297.7102 5 70214.5	192 ⁴ 1323 16.6	9.		1144	1154	795	14.2	6.79	1004	692	13.9	0.96
97.4^{5} 672 14.8 102 96.8 ⁴ 668 14.3 100^{5} 692 14.2 97.7 102^{5} 702 14.5	1369 1430	9. 6 .		100	119 130		13.9 14.1	96.1 97.0	91.8		13.1	90.5 91.2
	66.5 ⁵ 459 12.8 32.4 ⁵ 223 14.4	86 4 4		88.5	97.4 ³ 100 ⁵		14.8	102 97.7	96.8 ⁴ 102 ⁵		14.3	98.8

Three point flexure test at a span-to-lepth ratio of 20/1 2 Composites were compression molded, for cure cycle see Table 17 3 Composites were postcured at $477~\rm K~(2C^4C)~tor~2C~hr)$.

T. CO.

Samples failed in compression Samples tailed in shear After 20 min soak at temperature

Table 39

Flexural Properties 1 of Humidity Exposed 2 Postcured Celion 6000/Epoxy Resin Composites 3 , 4

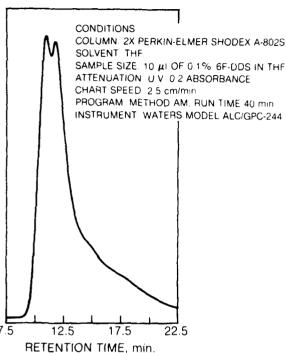
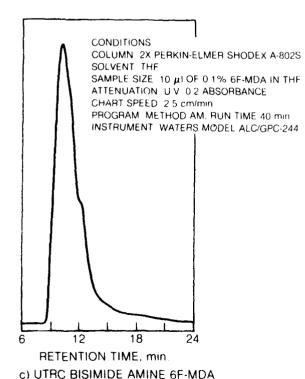
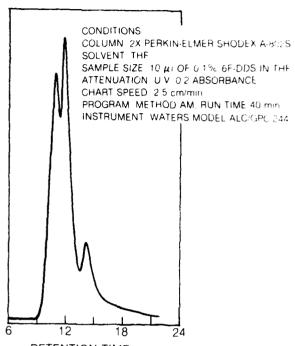
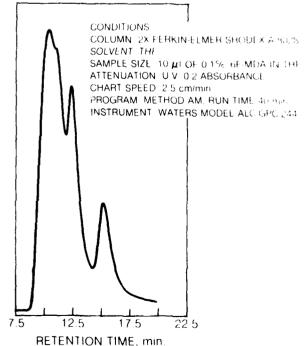

,		}	RT	1.	{ ;	\simeq	(150°C) ⁷	1	6	×	(177°C)7	J
Composite	Strength Ksi MPe	gth /	Modulus 10 ⁶ psi <u>G</u>	lus GPa	Strei	Strength J	Modulus 10 ⁶ psi	us GPa	Strength of Kei MPa	gth 5	Modulus 10 ⁶ psi	GPa
33-c	216	1489	16.4	113					106	734	14.6	101
20-IME-1	226 236	1560 1628	16.2 16.2	112	152 144	1050 993	14.7 13.2	102 91.1	110	762 746	12.7	87.7 91.1
32-IME-2	225 207	1549 1427	17.5	121 116	100 95	692 657	14.8 16.1	102	51 52	357 384	9.10 8.90	62.8
28-IME-3	202 214	1398	16.2	112 119	134	928	15.8	109	52 55	356 383	7.06	48.7
29-IME-4	213 222	1468 1530	15.9	110	106	733 715	14.9 13.5	103 93.2	88 91	606 625	13.0	89.7
24-IME-5	210	1448	16.8	114	152	1051	15.6	107				
30-1ME-5	239	1650	15.6	107	141	973 962	15.6	107	124	855	14.6	100
31-IME-6	222	1531 1615	18.6	128 122	124 113	854 778	14.7 13.5	102 93.2	79 108	544 744	10.8	74.6
26-IME-7	165	1136	15.2	105	116	803	13.3	91.8	74.7	515	11.9	82.1

Table 39 (Cont'd)

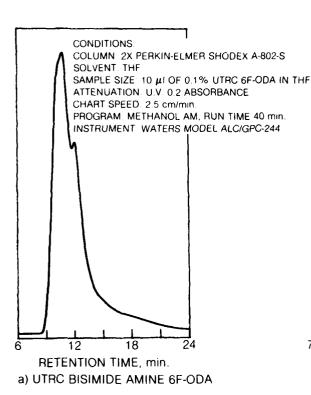

	cPa GPa	84.2	65.7
450 K (177°C) ⁷	Modulus 10 ⁶ psi GPa	12.2	9.51 8.49
450 K	gth MPa	90.7 625	476 325 46 314
	Strength ksi MPa	90.7	476 46
	GPa GPa	107 80.9	73.9
423 K (150°C) ⁷	Modulus 10 ⁶ psi G	15.6 13.2	10.7
423 K	ng th MPa	583 502	402 351
	Strength ksi MPa	84.6 583 84.4 502	58 51 ⁶
	lus GPa	114 98.7	104
	Modulus 10 ⁶ psi GPa	16.5	15.1
RT	æ	1452 1160	605 500
ļ	Strength ksi MP	214 1 168 1	88 72
	Composite No.	27-IME-8	38-IME-8

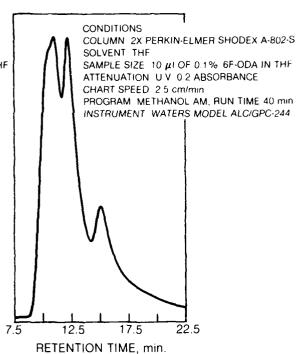

composites were compression molded composites; for cure cycle see Table 17 composites were postcured at 204°C for 24 hrs most samples failed in compression failed in shear after 20 min soak at temperature Three point flex test at a span-to-depth of 20/1 , $^287\%$ RH at 355 K (82°C) to saturation

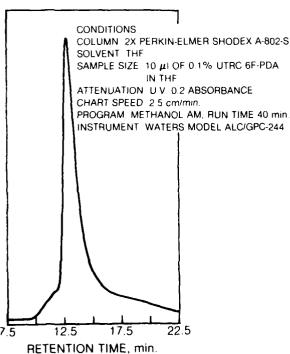
GEL PERMEATION CHROMATOGRAM OF BISIMIDE AMINES



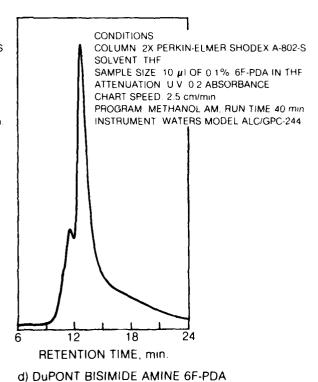
a) UTRC BISIMIDE AMINE 6F-DDS

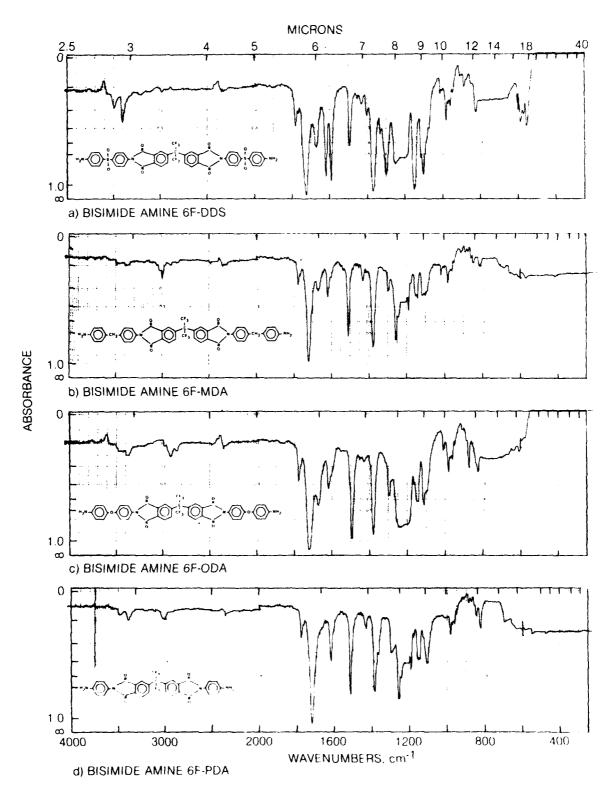


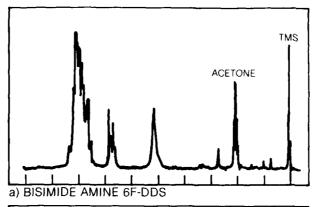

RETENTION TIME, min.
b) DuPONT BISIMIDE AMINE 6F-DDS

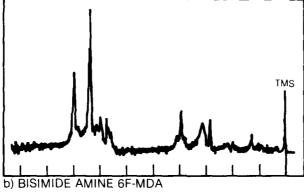

d) DuPONT BISIMIDE AMINE 6F-MDA

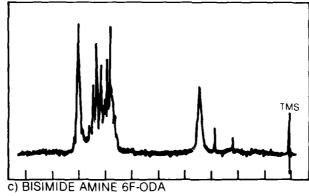
GEL PERMEATION CHROMATOGRAM OF BISIMIDE AMINES

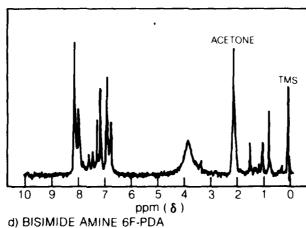



b) DuPONT BISIMIDE AMINE 6F-ODA

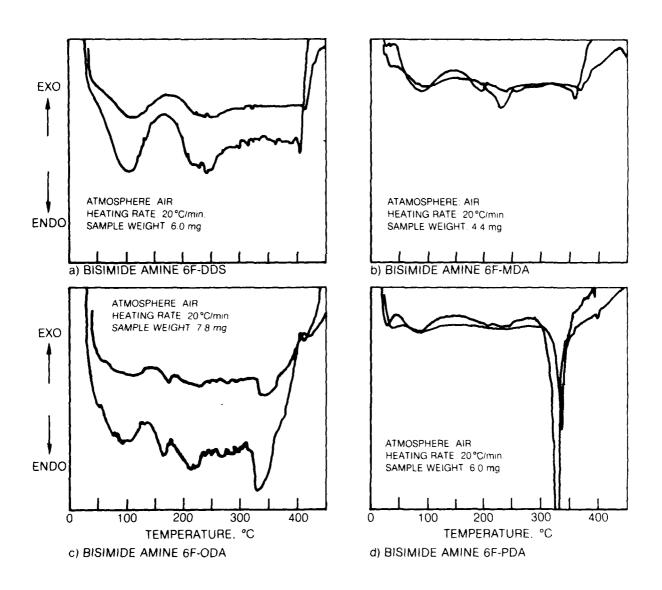


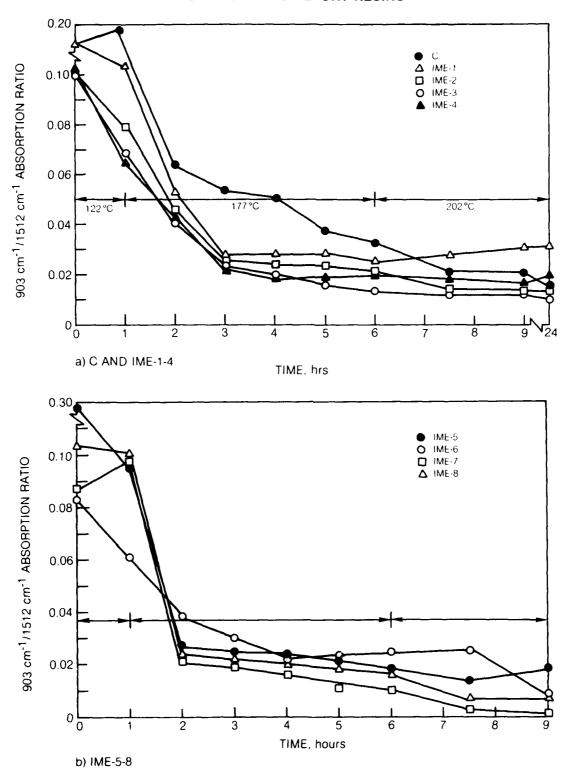


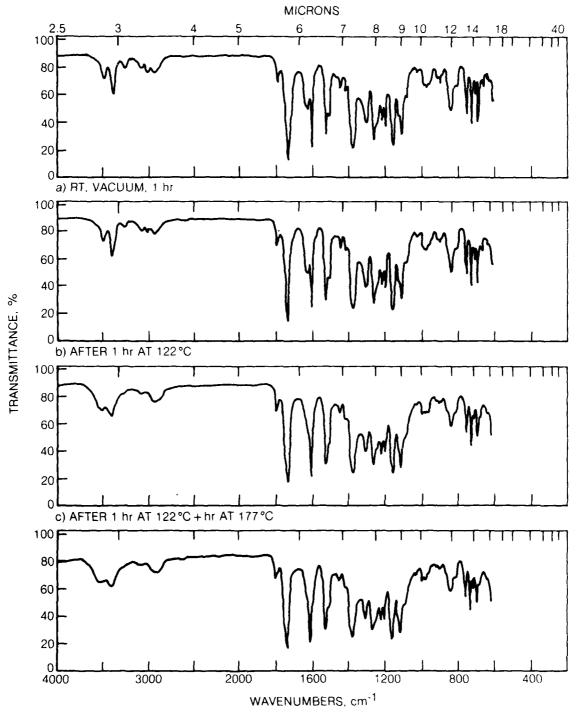

INFRAFED SPECTRUM OF BISIMIDE AMINES

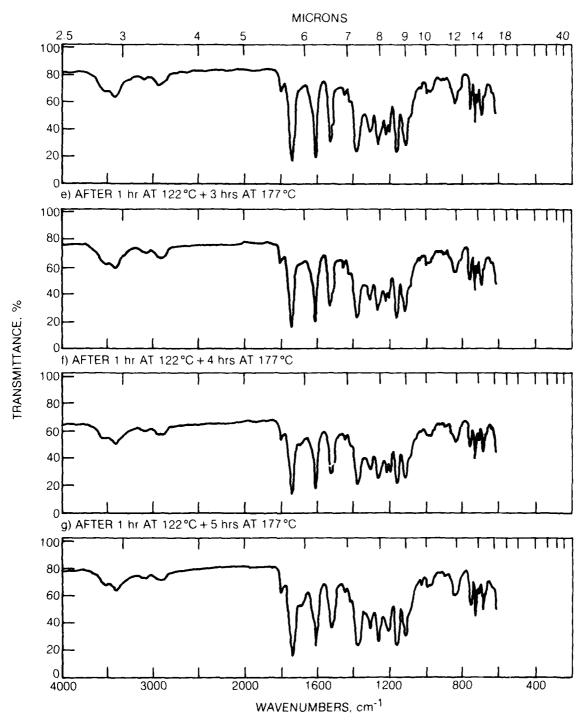


NMR SPECTRUM OF BISIMIDE AMINES

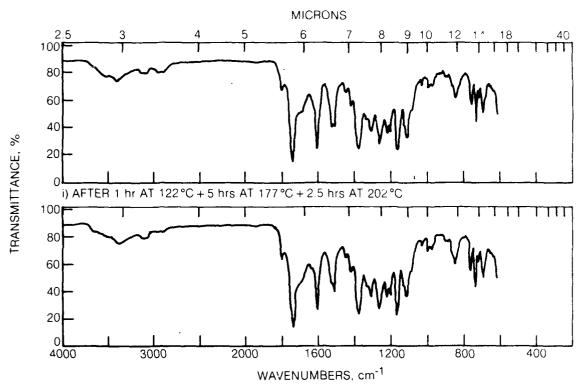




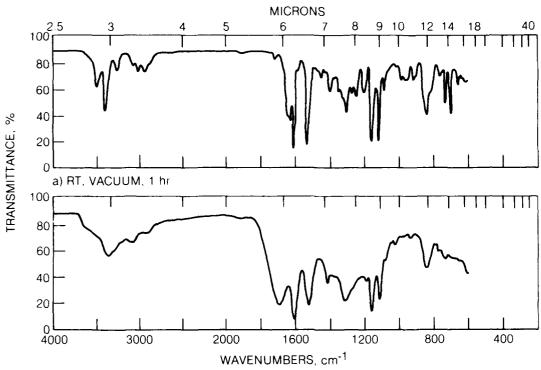

DSC CHROMATOGRAM OF BISIMIDE AMINES


IR CURE STUDY OF EPOXY RESINS

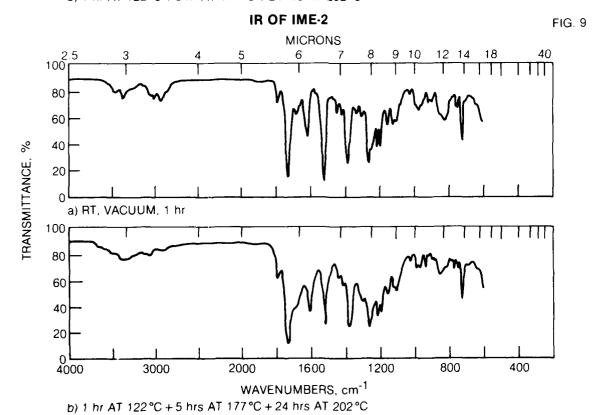
IR OF IME-1 EPOXY RESIN CURE PROCESS



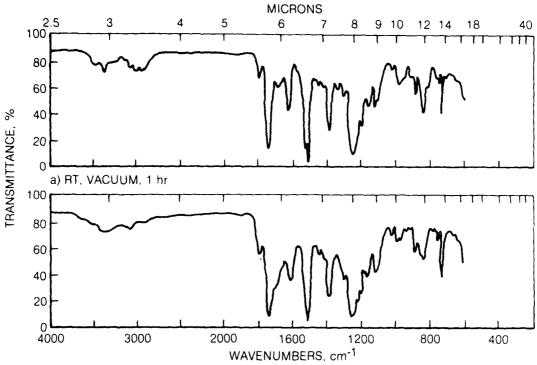
IR OF IME-1 EPOXY RESIN CURE PROCESS (CONTINUED)


h) AFTER 1 hr AT 122°C + 5 hrs AT 177°C + 1.5 hrs AT 202°C

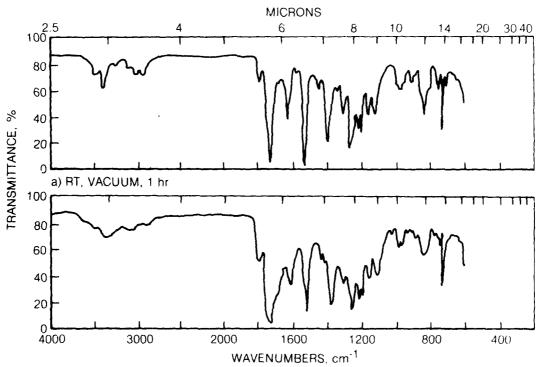
IR OF IME-1 EPOXY RESIN CURE PROCESS (CONCLUDED)



j) AFTER 1 hr AT 122 °C + 5 hrs AT 177 °C + 24 hrs AT 202 °C


IR OF CONTROL RESIN

b) 1 hr AT 122 °C + 5 hr AT 177 °C + 24 hrs AT 202 °C


IR OF IME-3 RESIN

b) 1 hr at 122°K + 5 hrs AT 177°C + 24 hrs at 202°C

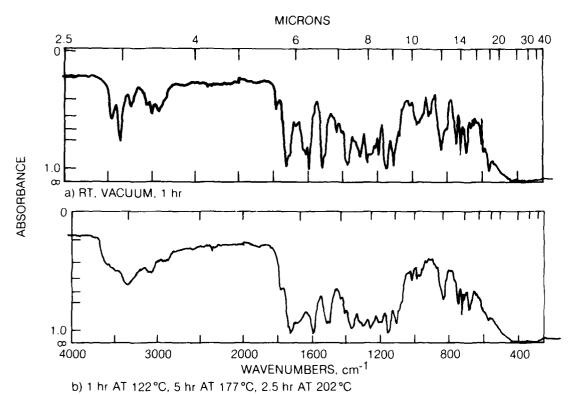
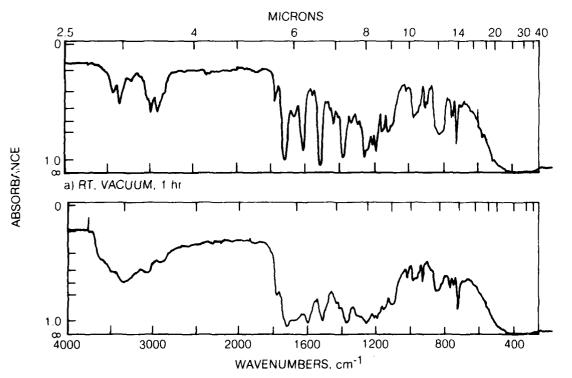
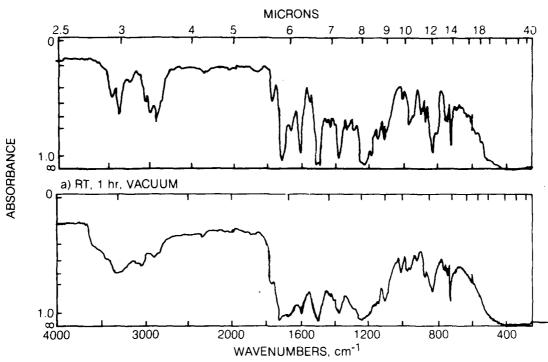


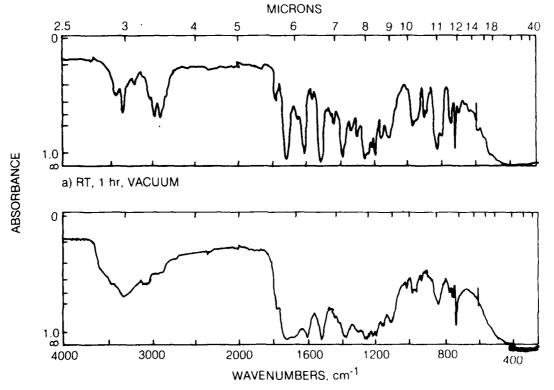
FIG. 11


b) 1 hr AT 122°K + 5 hrs AT 177°C + 24 hrs AT 202°C

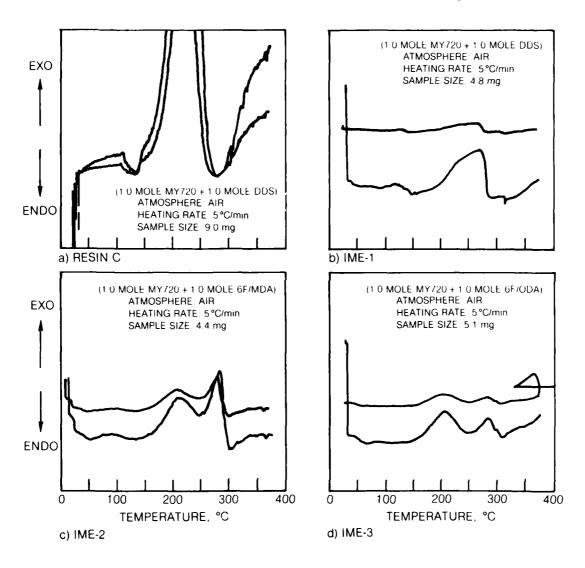
IR OF IME-5 RESIN

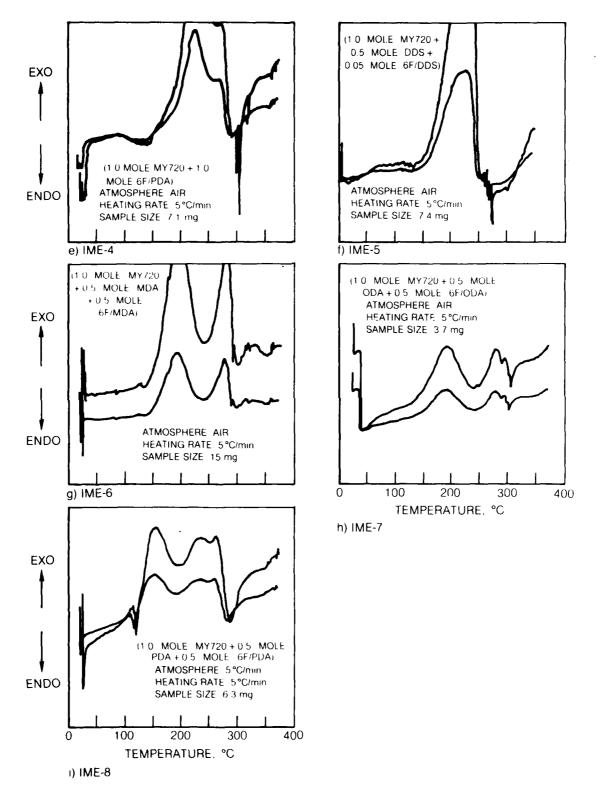

IR OF IME-6 RESIN

b) 1 hr AT 122°C, 5 hr AT 177°C, 2.5 hr AT 202°C

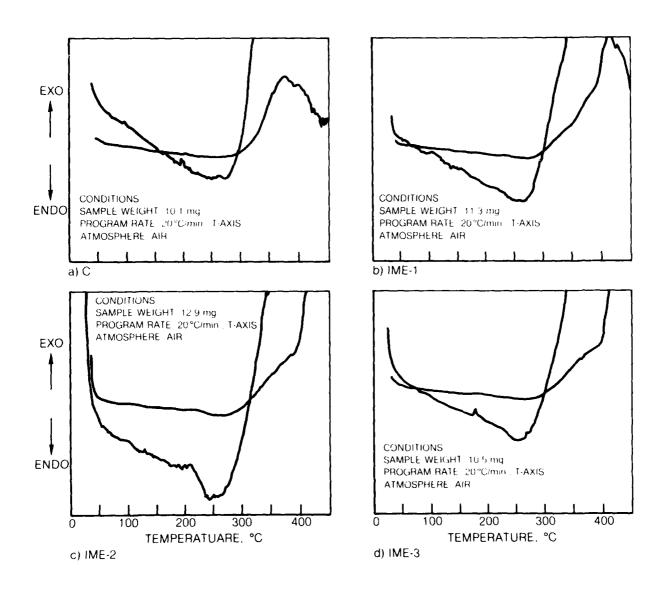


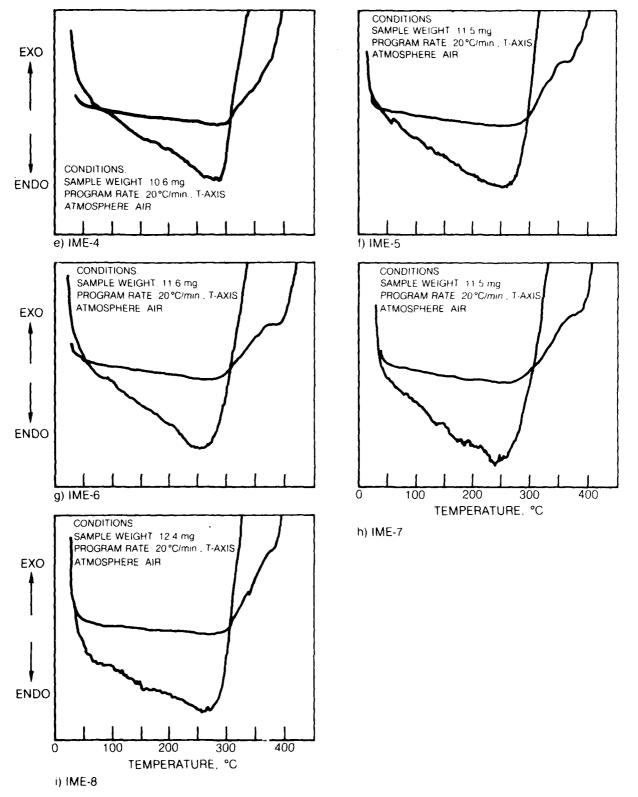
b) 1 hr AT 122°C + 5 hrs AT 177°C + 2.5 hrs AT 202°C

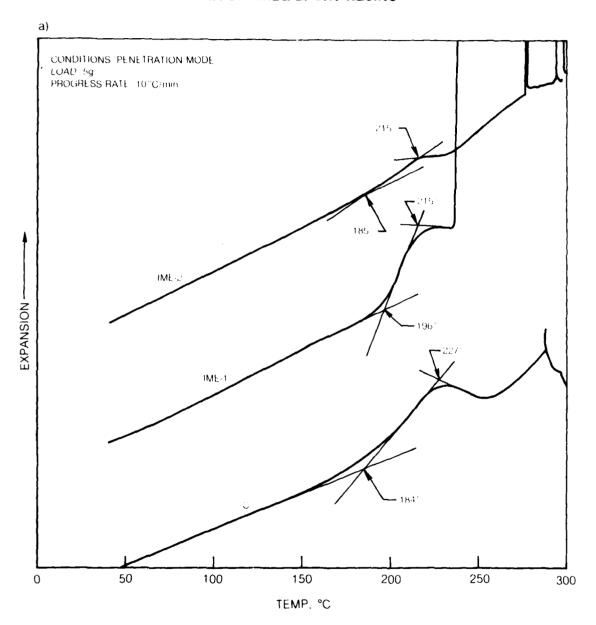


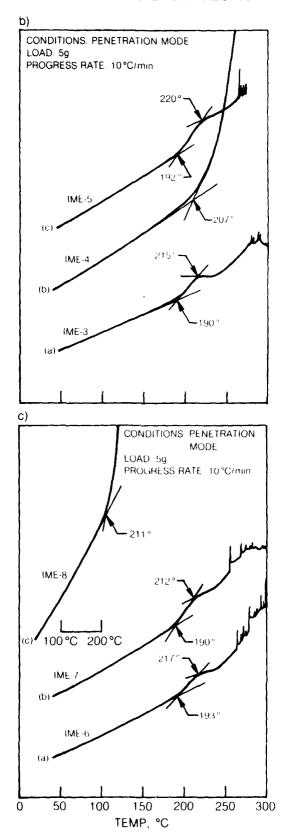


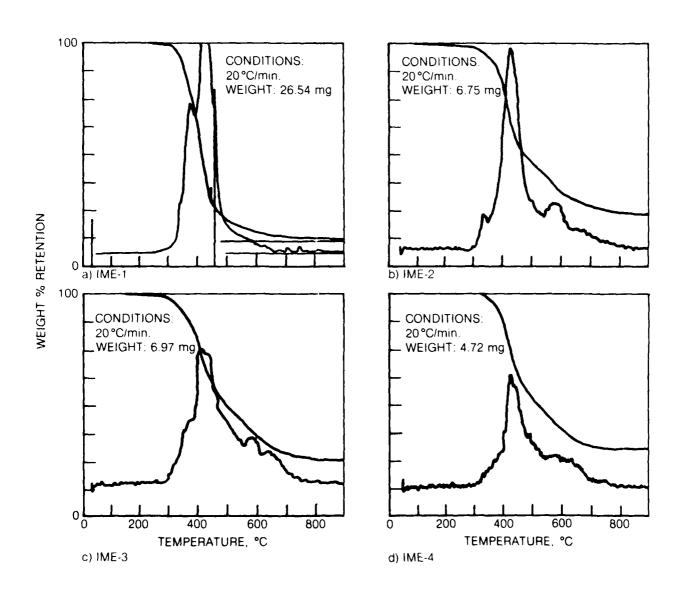
b) 1 hr AT 122°C + 5 hrs AT 177°C + 2.5 hrs AT 202°C

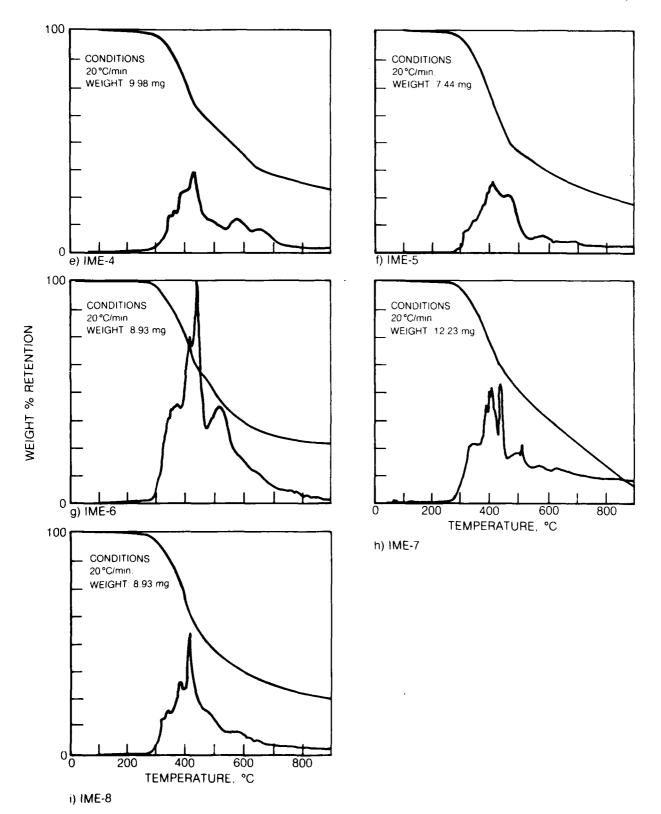

DSC THERMOGRAMS OF UNCURED EPOXY RESINS

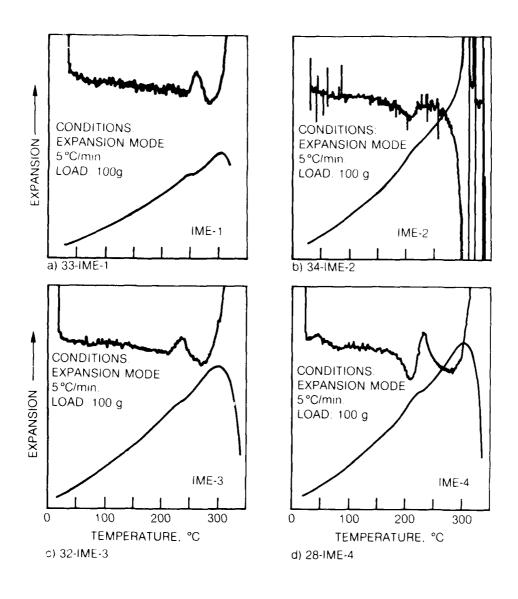

DSC THERMOGRAMS OF UNCURED EPOXY RESINS (CONTINUED)

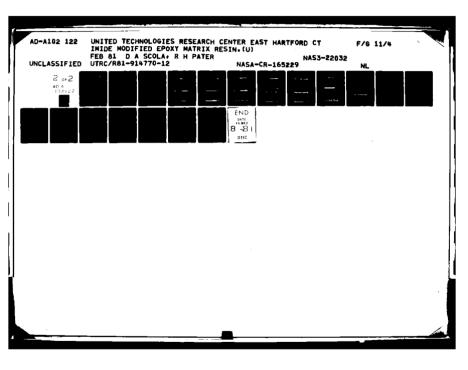

DSC THERMOGRAMS OF CURED EPOXY RESINS


DSC THERMOGRAMS OF CURED EPOXY RESINS (CONTINUED)

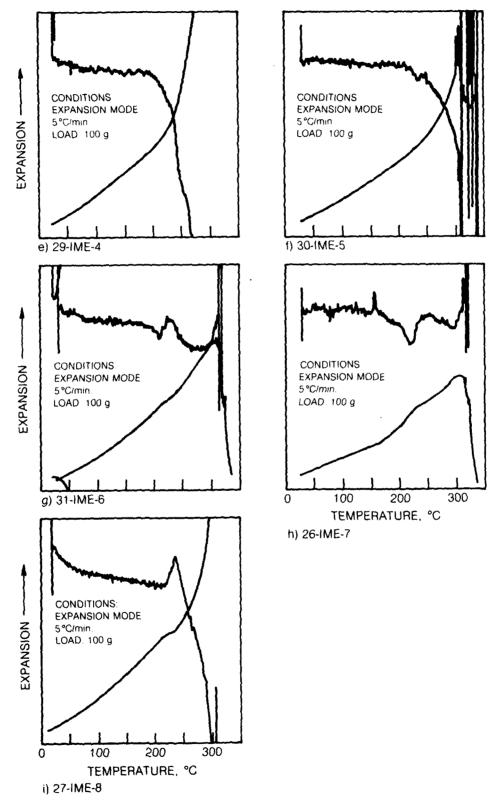

TMA OF IMIDE EPOXY RESINS


TMA OF IMIDE EPOXY RESINS

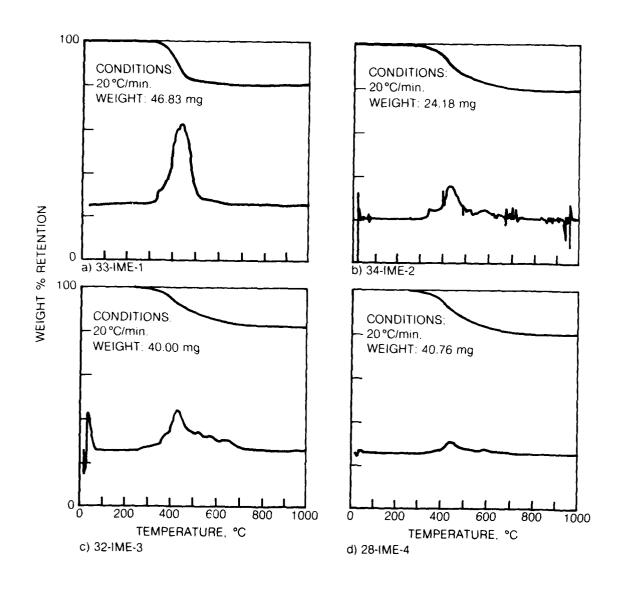

THERMOGRAVIMETRIC ANALYSIS (TGA) OF CURED IME EPOXY RESINS

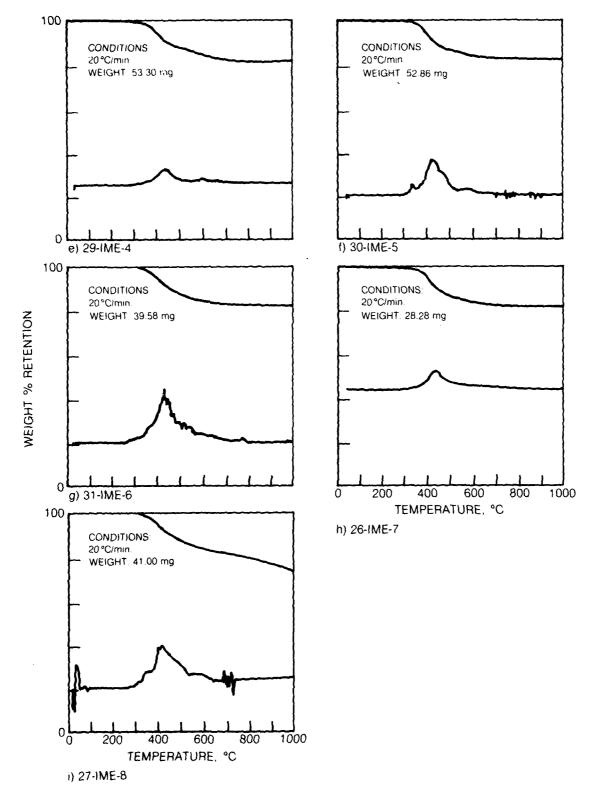


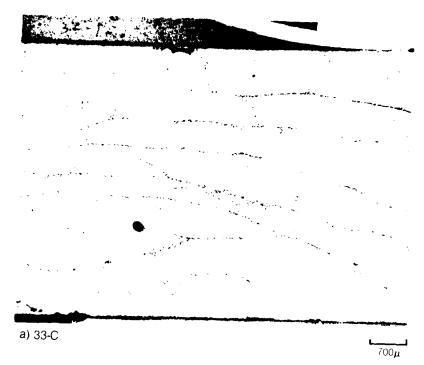
THERMOGRAVIMETRIC ANALYSIS (TGA) OF CURED EPOXY RESINS (CONTINUED)



THERMOCHEMICAL ANALYSIS (TMA) OF CELION 6000/IME EPOXY RESIN COMPOSITES



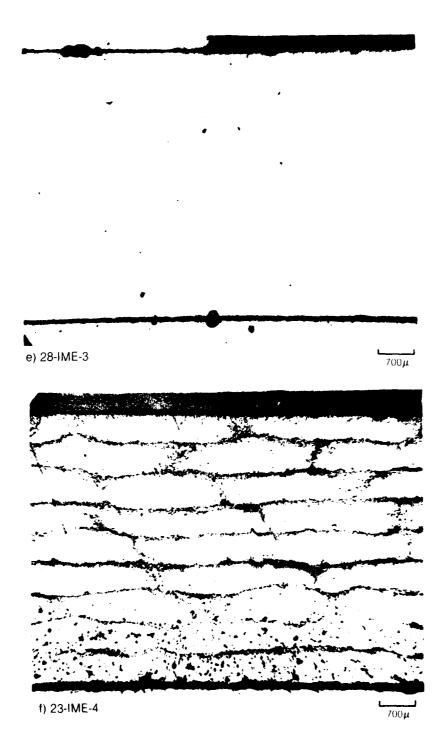

THERMOMECHANICAL ANALYSIS (TMA) OF CELION 6000 EPOXY RESIN COMPOSITES (CONTINUED)

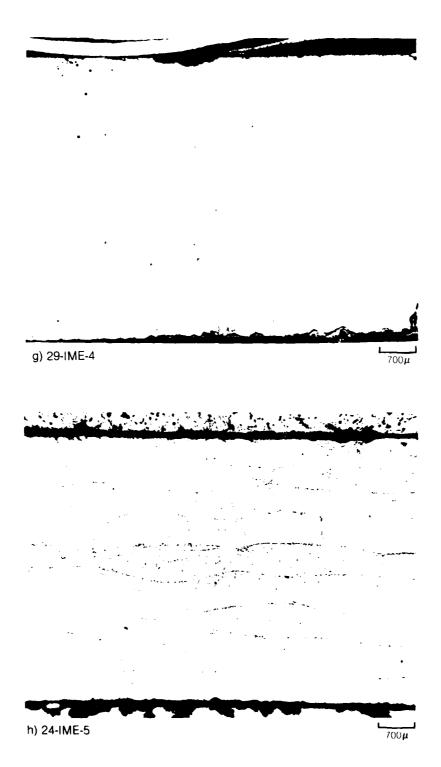

THERMOGRAVIMETRIC ANALYSIS (TGA) OF CELION 6000/IME EPOXY RESIN COMPOSITES

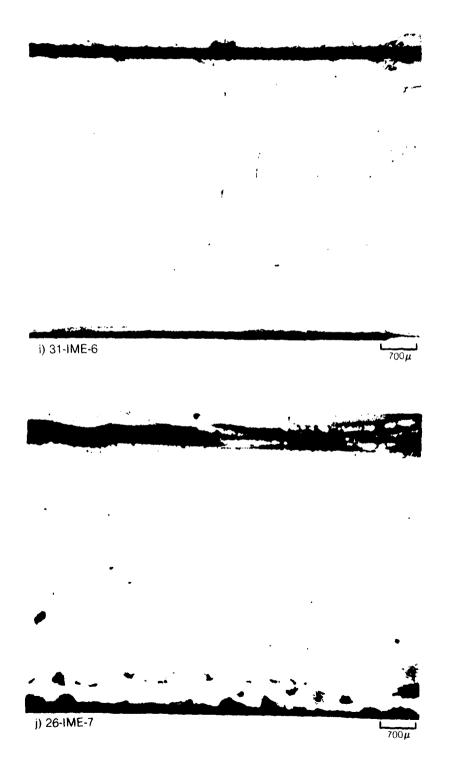
THERMOGRAVIMETRIC ANALYSIS (TGA) OF CELION 6000 EPOXY RESIN COMPOSITES (CONTINUED)

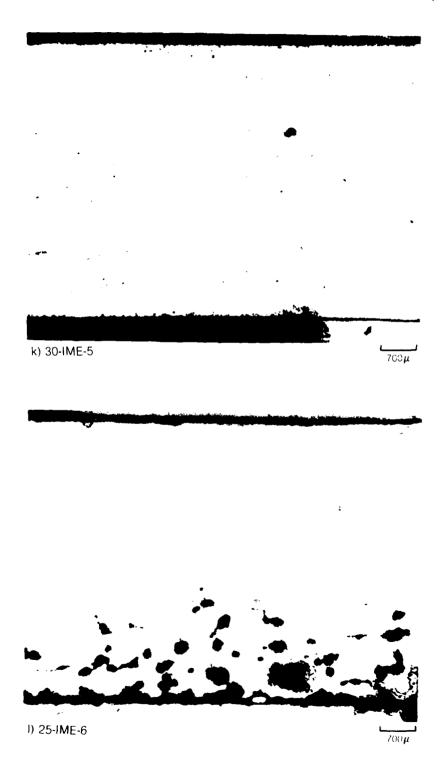


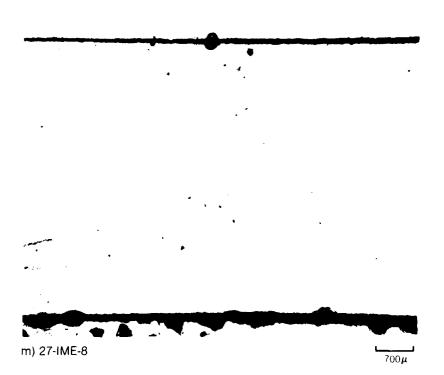
OPTICAL MICROGRAPHS OF CELION 6000/IME EPOXY RESIN COMPOSITES

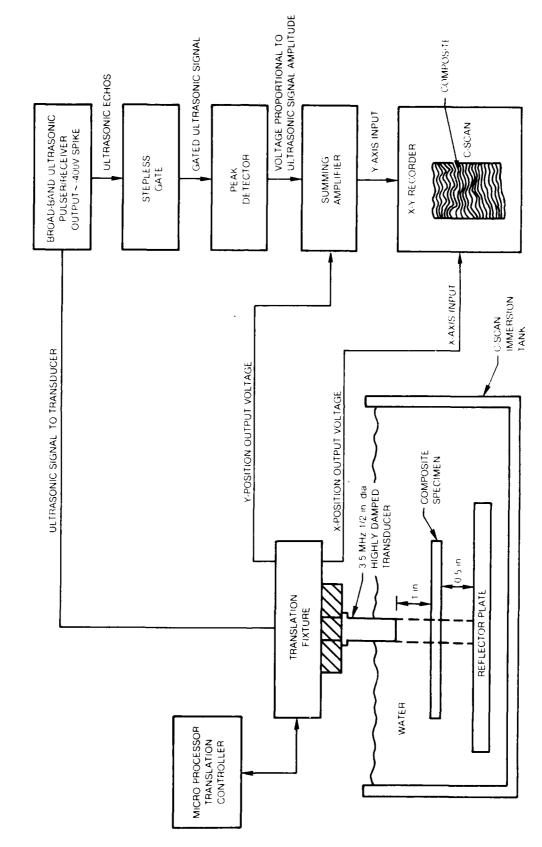



OPTICAL MICROGRAPHS OF CELION 6000 EPOXY RESIN COMPOSITES (CONTINUED)


OPTICAL MICROGRAPHS OF CELION 6000 EPOXY RESIN COMPOSITES (CONTINUED)


OPTICAL MICROGRAPHS OF CELION 6000 EPOXY RESIN COMPOSITES (CONTINUED)


OPTICAL MICROGRAPHS OF CELION 6000 EPOXY RESIN COMPOSITE (CONTINUED)



OPTICAL MICROGRAPHS OF CELION 6000/IME EPOXY RESIN COMPOSITES (CONTINUED)

OPTICAL MICROGRAPHS OF CELION 6000/IME EPOXY RESIN COMPOSITE (CONCLUDED)

EXPERIMENTAL SET-UP FOR AMPLITUDE MODULATED ULTRASONIC C-SCANS

DISTRIBUTION LIST

	Copies
NASA Lewis Research Center 21000 Brookpark Road Cleveland, OH 44135	
Attn: Contracting Officer, D. M. Thomas, M. S. 501-11 Technical Report Control Office, M. S. 5-5 Technology Utilization Office, M. S. 3-16 AFSC Liaison Office, M. S. 4-1 Library, M. S. 60-3 Office of Reliability and Quality Assurance, M. S. 500-211 Materials Division Contract File, M. S. 49-1 N. T. Musial, M. S. 500-318 Dr. T. T. Serafini, M. S. 49-1	1 1 2 2 1 1 1 Balance
NASA Headquarters Washington, D. C. 20546	
Attn: C. Bersch, Code RTM-6	1
NASA Scientific and Technical Information Facility Attn: Acquisitions Branch P. O. Box 8757 Baltimore/Washington International Airport, MD 21240	20
NASA Ames Research Center Moffett Field, CA 94035	
Attn: Dr. J. A. Parker, M. S. 223-6	1
NASA Flight Research Center P. O. Box 273 Edwards, VA 93523	
Attn: Library	1
NASA Goddard Space Flight Center Greenbelt, MD 20771	
Attn: Library	1

	Copies
NASA John F. Kennedy Space Center Kennedy Space Center, FL 32899	
Attn: Library	1
NASA Langley Research Center Hampton, VA 23665	
Attn: Dr. V. L. Bell, M. S. 226 Dr. N. Johnston, M. S. 226	1
NASA Manned Spacecraft Center Houston, TX 77001	
Attn: Library Code ER	1 1
NASA George C. Marshall Space Flight Center Huntsville, AL 35812	
Attn: Dr. J. Curry, EH31 Dr. J. Stuckey, EH33	1
Jet Propulsion Laboratory 4800 Oak Grove Drive Pasadena, CA 91103	
Attn: Library	1
Office of the Director of Defense Research and Engineering Washington, D. C. 20301	
Attn: Dr. H. W. Schulz, Office of Assistant Director (Chem. Technology)	1
Defense Documentation Center Cameron Station Alexandria, VA 22314	1
Research and Technology Division Bolling Air Force Base Washington, D. C. 20332	
Attn: Code TRNP	1
Bureau of Naval Weapons Department of the Navy Washington, D. C. 20360	
Attn: Code DLI-3	1

	Copies
Director (Code 6180) U. S. Naval Research Laboratory Washington, D. C. 20390	
Attn: H. W. Carhart	1
SARPA-FR-MD Plastics Technical Evaluation Center Picatinny Arsenal Dover, NJ 07801	
Attn: A. M. Anzalone, Bldg. 176	1
Aeronautics Division of Philco Corporation Ford Road Newport Beach, CA 92600	
Attn: Dr. L. H. Linder, Manager Technical Information Department	1
Aerospace Corporation P. O. Box 95085 Los Angeles, CA 90045	
Attn: Library Documents	1
Aerotherm Corporation 800 Welcn Road Palo Alto, CA 94304	
Attn: Mr. R. Rindal	1
Air Force Materials Laboratory Wright-Patterson Air Force Base, OH 45433	
Attn: AFML/MBC, T. J. Reinhart, Jr.	1
Office of Aerospace Research (RROSP) 1400 Wilson Boulevard Arlington, VA 22209	
Attn: Major Thomas Tomaskovic	1
Composites Horizons 2303 W. Valley Boulevard Pomona, CA 91768	
Attn: I. Petker	1

	Copies
Air Force Office of Scientific Research Washington, D. C. 20333	
Attn: SREP, Dr. J. F. Masi	1
American Cyanamid Company 1937 West Main Street Stamford, CT 06902	
Attn: Security Officer	1
AVCO Corporation Space Systems Division Lowell Industrial Park Lowell, MA 01851	
Attn: J. Henshaw	1
Battelle Memorial Institute 505 King Avenue Columbus, OH 42301	
Attn: Report Library, Room 6A	1
Bell Aerosystems, Incorporated P. O. Box 1 Buffalo, NY 14205	
Attn: T. Reinhardt	1
The Boeing Company Aerospace Division P. O. Box 3999 Seattle, WA 98124	
Attn: E. House	1
Celanese Research Company Morris Court Summit, NJ	
Attn: Dr. J. R. Leal	1
University of Denver Denver Research Institute P. O. Box 10127 Denver, CO 80210	
Attn: Security Office	1

	Copies
Dow Chemical Company Security Section P. O. Box 31 Midland, MI 48641	
Attn: Dr. R. S. Karpiuk, Building 1710	1
E. I. DuPont de Nemours and Company Research and Development Division Wilmington, DE 19898	
Attn: Dr. H. H. Gibbs	1
Ultrasystems, Incorporated 2400 Michelson Drive Irvine, CA 92664	
Attn: Dr. R. Kratzer	1
General Dynamics/Convair Dept. 643-10 Kerny Mesa Plant San Diego, CA 92112	
Attn: J. Hertz	1
Ferro Corporation 3512-20 Helms Avenue Culver City, CA 90230	
Attn: J. Hartman	1
General Electric Company Technical Information Center N-32, Building 700 Cincinnati, OH 45215	
Attn: M. Grandey	1
Fiberite Corporation 501-559, West 3rd Street Winona, MN 55987	
Attn: Dr. J. Allen	1
Grumman Aerospace Corporation Advanced Materials and Processes Bethpage, NY 11714	
Attn: A. London	1

	Copies
Hexcel 11711 Dublin Boulevard Dublin, VA 94566	
Attn: Dr. D. Neuner	1
Hughes Aircraft Company Culver City, CA 90230	
Attn: Dr. N. Bilow	1
IIT Research Institute Technology Center Chicago, IL 60616	
Attn: Dr. C. K. Hersh, Chemistry Division	1
Lockheed Missiles and Space Company Propulsion Engineering Division (D. 55-11) 111 Lockheed Way Sunnyvale, CA 94087	1
	1
McDonnell Douglas Corporation Douglas Aircraft Company 3855 Lakewood Boulevard Long Beach, CA 90846	
Attn: Dr. N. Byrd	1
Monsanto Research Corporation Dayton Laboratory Station B, Box 8 Dayton, OH 45407	
Attn: Library	1
North American Rockwell Corporation Space and Information Systems Division 12214 Lakewood Boulevard Downey, CA 90242	
Attn: Technical Information Center, D/096-722 (AJ01)	1
Northop Corporate Laboratories Hawthorne, Ca 90250	
Attn: Library	1
Stanford Research Institute Menlo Park, CA 94025	
Attn: Library	1

	Copies
Union Carbide Corporation 12900 Snow Road Parma, OH 44130	<u> </u>
Attn: Library	1
United Technologies Corporation United Technologies Research Center 400 Main Street East Hartford, CT 06108	
Attn: G. Wood Dr. D. A. Scola	1
United Technologies Corporation United Technology Cener P. O. Box 358 Sunnyvale, CA 94088	
Attn: Library	1
Westinghouse Electric Corporation Westinghouse R and D Center 1310 Beulah Road Pittsburgh, PA 15235	
Attn: Dr. J. H. Freeman	1
TRW Systems One Space Park Redondo Beach, CA 90278	
Attn: Dr. R. J. Jones, Bldg, 01, Rm. 2020	1
General Dynamics Convair Aerospace Division P. O. Box 748 Forth Worth, TX 76101	
Attn: Technical Library, 6212	1
Material Science Corporation 1777 Walton Road Blue Bell, PA 19422	
Attn: Ms. N. Sabia	1
U. S. Polymeric 700 E. Dyer Boulevard Santa Ana, CA 92707	
Attn: D. Beckley	1

	Copies
U. S. Army Air Mobility R and D Lab Fort Eustis, VA 23604	
Attn: H. L. Morrow, SAVDL-EU-TAP	1
U. S. Army Aviation Systems Command P. O. Box 209, Main Office St. Louis, MO 63166	
Attn: R. Evers	1
Air Force Materials Laboratory Wright-Patterson Air Force Base, OH 45433	
Attn: P. Pirrung, AFML/LTN	1
Great Lakes Chemical Corporation P. O. Box 2200 West Lafayette, IN 47906	
Attn: M. F. Howells	1
P and W Aircraft Products Group P. O. Box 2691 West Palm Beach, Florida 33402	
Attn: P. Cavano M-26	1
Martin Marietta Aerospace P. O. Box 5837 Orlando, Florida 32855	
Attn: Dr. R. A. Mayor	1
Hamilton Standard Windsor Locks, CT 06096	
Attn: R. Paul (1-1-12)	1
P and W Aircraft Group Commercial Products Division P. O. Box 611 Middletown, CT 06547	
Attn: S. Blecherman (M. S. B-140)	1